Advertisement

Coprimality in Finite Models

  • Marcin Mostowski
  • Konrad Zdanowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3634)

Abstract

We investigate properties of the coprimality relation within the family of finite models being initial segments of the standard model for coprimality, denoted by \(\mathrm{FM}((\omega,\bot))\).

Within \(\mathrm{FM}((\omega,\bot))\) we construct an interpretation of addition and multiplication on indices of prime numbers. Consequently, the first order theory of \(\mathrm{FM}((\omega,\bot))\) is Π\(^{\rm 0}_{\rm 1}\)–complete (in contrast to the decidability of the theory of multiplication in the standard model). This result strengthens an analogous theorem of Marcin Mostowski and Anna Wasilewska, 2004, for the divisibility relation.

As a byproduct we obtain definitions of addition and multiplication on indices of primes in the model \((\omega,\bot,\leq_{P_2})\), where P 2 is the set of primes and products of two different primes and ≤ X is the ordering relation restricted to the set X. This can be compared to the decidability of the first order theory of \((\omega,\bot,\leq_P)\), for P being the set of primes (Maurin, 1997) and to the interpretation of addition and multiplication in \((\omega,\bot,\leq_{P^2})\), for P 2 being the set of primes and squares of primes, given by Bès and Richard, 1998.

Keywords

finite models arithmetic finite arithmetic coprimality interpretations complete sets FM–representability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bès, A., And Richard, D.: Undecidable extensions of Skolem arithmetic. Journal of Symbolic Logic 63, 379–401 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Gurevich, Y.: Logic and the Challenge of Computer Science. In: Börger, E. (ed.) Current Trends in Theoretical Computer Science, pp. 1–7. Computer Science Press, Rockville (1988)Google Scholar
  3. 3.
    Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the ACM 12, 576–583 (1969)zbMATHCrossRefGoogle Scholar
  4. 4.
    Jameson, G.J.O.: The prime number theorem. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  5. 5.
    Kołodziejczyk, L.A.: Truth definitions in finite models. Journal of Symbolic Logic 69, 183–200 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kołodziejczyk, L.A.: A finite model-theoretical proof of a property of bounded query classes within PH. Journal of Symbolic Logic 69, 1105–1116 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Krynicki, M., And Zdanowski, K.: Theories of arithmetics in finite models. Journal of Symbolic Logic 70, 1–28 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Lee, T.: Arithmetical definability over finite structures. Mathematical Logic Quarterly 49, 385–393 (2003)zbMATHCrossRefGoogle Scholar
  9. 9.
    Maurin, F.: The theory of integer multiplication with order restricted to primes is decidable. Journal of Symbolic Logic 62, 123–130 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Mostowski, M.: On representing concepts in finite models. Mathematical Logic Quarterly 47, 513–523 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Mostowski, M.: On representing semantics in finite models. In: Rojszczak, A., Cachro, J., Kurczewski, G. (eds.) Philosophical Dimensions of Logic and Science, pp. 15–28. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  12. 12.
    Mostowski, M., Andwasilewska, A.: Arithmetic of divisibility in finite models. Mathematical Logic Quarterly 50, 169–174 (2004)zbMATHCrossRefGoogle Scholar
  13. 13.
    Mostowski, M., And Zdanowski, K.: FM–representability and beyond. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 358–367. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Schweikardt, N.: Arithmetic, First-Order Logic, and Counting Quantifiers. ACMTransactions on Computational Logic 5, 1–35 (2004)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Sierpiński, W.: Elementary Theory of Numbers. PWN (Polish Scientific Publishers), North Holland (1964)zbMATHGoogle Scholar
  16. 16.
    Szczerba, L.W.: Interpretability of elementary theories. In: Butts, Hintikka (eds.) Proceedings 15th ICALP 88 Logic, foundations of mathematics and computability theory, pp. 129–145. Reidel Publishing, Dordrecht (1977)Google Scholar
  17. 17.
    Trachtenbrot, B.: The impossibility of an algorithm for the decision problem for finite domains. In: Doklady Akademii Nauk SSSR, vol. 70, pp. 569–572 (1950) (in Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Marcin Mostowski
    • 1
  • Konrad Zdanowski
    • 2
  1. 1.Department of LogicInstitute of Philosophy, Warsaw University 
  2. 2.Institute of MathematicsPolish Academy of Science 

Personalised recommendations