Permutative Logic

  • Jean-Marc Andreoli
  • Gabriele Pulcini
  • Paul Ruet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3634)


Recent work establishes a direct link between the complexity of a linear logic proof in terms of the exchange rule and the topological complexity of its corresponding proof net, expressed as the minimal rank of the surfaces on which the proof net can be drawn without crossing edges. That surface is essentially computed by sequentialising the proof net into a sequent calculus which is derived from that of linear logic by attaching an appropriate structure to the sequents. We show here that this topological calculus can be given a better-behaved logical status, when viewed in the variety-presentation framework introduced by the first author. This change of viewpoint gives rise to permutative logic, which enjoys cut elimination and focussing properties and comes equipped with new modalities for the management of the exchange rule. Moreover, both cyclic and linear logic are shown to be embedded into permutative logic. It provides the natural logical framework in which to study and constrain the topological complexity of proofs, and hence the use of the exchange rule.


Linear Logic Structural Rule Sequent Calculus Minimal Rank Categorial Grammar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abrusci, V.M.: Non-commutative logic and categorial grammar: ideas and questions. In: Abrusci, V.M., Casadio, C. (eds.) Dynamic Perspectives in Logic and Linguistics, Cooperativa Libraria Universitaria Editrice Bologna (1999)Google Scholar
  2. 2.
    Abrusci, V.M., Ruet, P.: Non-commutative logic I: the multiplicative fragment. Annals of Pure and Applied Logic 101(1), 29–64 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Andreoli, J.-M.: An axiomatic approach to structural rules for locative linear logic. In: Linear logic in computer science. London Mathematical Society Lecture Notes Series, vol. 316, Cambridge University Press, Cambridge (2004)Google Scholar
  4. 4.
    Andreoli, J.-M., Pareschi, R.: Linear objects: logical processes with built-in inheritance. New Generation Computing 9 (1991)Google Scholar
  5. 5.
    Bellin, G., Fleury, A.: Planar and braided proof-nets for multiplicative linear logic with mix. Archive for Mathematical Logic 37(5-6), 309–325 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gaubert, C.: Two-dimensional proof-structures and the exchange rule. Mathematical Structures in Computer Science 14(1), 73–96 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Girard, J.-Y.: Linear logic. Theoretical Computer Science 50(1), 1–102 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Habert, L., Notin, J.-M., Galmiche, D.: Link: a proof environment based on proof nets. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 330–334. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Mathematical Proceedings of the Cambridge Philosophical Society 119, 447–468 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Lambek, J.: The mathematics of sentence structure. American Mathematical Monthly 65(3), 154–170 (1958)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Lecomte, A., Retoré, C.: Pomset logic as an alternative categorial grammar. In: Oehrle, M. (ed.) Formal Grammar, Barcelona (1995)Google Scholar
  12. 12.
    Massey, W.S.: A basic course in algebraic topology. Springer, Heidelberg (1991)zbMATHGoogle Scholar
  13. 13.
    Melliès, P.-A.: A topological correctness criterion for multiplicative noncommutative logic. In: Linear logic in computer science. London Mathematical Society Lecture Notes Series, vol. 316, Cambridge University Press, Cambridge (2004)Google Scholar
  14. 14.
    Métayer, F.: Implicit exchange in multiplicative proofnets. Mathematical Structures in Computer Science 11(2), 261–272 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Miller, D., Nadathur, G., Pfenning, F., Scedrov, A.: Uniform proofs as a foundation for logic programming. Annals Pure Appl. Logic 51, 125–157 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Polakow, J., Pfenning, F.: Natural deduction for intuitionistic non-commutative linear logic. In: Girard, J.-Y. (ed.) TLCA 1999. LNCS, vol. 1581, pp. 295–309. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Retoré, C.: Pomset logic - A non-commutative extension of commutative linear logic. In: de Groote, P., Hindley, J.R. (eds.) TLCA 1997. LNCS, vol. 1210, Springer, Heidelberg (1997)Google Scholar
  18. 18.
    Ruet, P., Fages, F.: Concurrent constraint programming and non-commutative logic. In: Nielsen, M. (ed.) CSL 1997. LNCS, vol. 1414, pp. 406–423. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  19. 19.
    Yetter, D.N.: Quantales and (non-commutative) linear logic. Journal of Symbolic Logic 55(1) (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jean-Marc Andreoli
    • 1
    • 3
  • Gabriele Pulcini
    • 2
  • Paul Ruet
    • 3
  1. 1.Xerox Research Centre EuropeMeylanFrance
  2. 2.Facoltà di Lettere e FilosofiaUniversità Roma TreRomaItaly
  3. 3.CNRS – Institut de Mathématiques de LuminyMarseille Cedex 9France

Personalised recommendations