Skip to main content

Optimal Placement of Active Members for Truss Structure Using Genetic Algorithm

  • Conference paper
Book cover Advances in Intelligent Computing (ICIC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3645))

Included in the following conference series:

Abstract

The objective of this work is to develop an optimization methodology to design adaptive truss structures with multiple optimally placed active members. The finite element model of truss structures with piezoelectric members is presented. The performance function is built for optimal design of active members at discrete locations in the output feedback control system by using the method proposed by K. Xu et al. Genetic algorithm (GA) is used to search the optimal locations of active members for vibration suppression of adaptive truss structure. A numerical example of the planar truss structure with two piezoelectric active members is performed, and the corresponding experimental set-up is designed for active vibration control. The experimental results demonstrate the effectiveness of optimal placement of active members for adaptive truss structures using genetic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bland, S.M., Sheng, L.Z., Kapania, R.K.: Design of Complex Adaptive Structures Using the Genetic Algorithm. In: Proc. SPIE Int. Soc. Opt. Eng., vol. 4512, pp. 212–218 (2001)

    Google Scholar 

  2. Abdullah, M.M., Richardson, A., Hanif, J.: Placement of Sensors/Actuators on Civil Structures Using Genetic Algorithms. Earthquake Engineering and Structural Dynamics 8, 1167–1184 (2001)

    Article  Google Scholar 

  3. Liu, F.Q., Zhang, L.M., Link, M.: Optimal Placement of Actuators and Sensors for Vibration Active Control. In: Proc. Int. Modal Analysis Conf., vol. 2, pp. 1820–1825 (1999)

    Google Scholar 

  4. Onoda, J., Hanawa, Y.: Actuator Placement Optimization by Genetic and Improved Simulated Annealing Algorithms. AIAA Journal 6, 1167–1169 (1993)

    Article  Google Scholar 

  5. Chen, G.S., Bruno, R.J., Salama, M.: Optimal Placement of Active/Passive Members in Truss Structures Using Simulated Annealing. AIAA J. 8, 1327–1334 (1991)

    Article  Google Scholar 

  6. Guo, H.Y., Zhang, L., Zhou, J.X., Jiang, J.: Optimal Placement of Actuators in Actively Controlled Structures by Genetic Algorithms. Process in Safety Science and Technology 3, 62–67 (2002)

    Google Scholar 

  7. Xu, B., Jiang, J.S.: Integrated Optimization of Structure and Control for Piezoelectric Intelligent Trusses with Uncertain Placement of Actuators and Sensors. Computational Mechanics 5, 406–412 (2004)

    Article  MathSciNet  Google Scholar 

  8. Gao, W., Chen, J.J., Ma, H.B., et al.: Optimal Placement of Active Bars in Active Vibration Control for Piezoelectric Intelligent Truss Structures with Random Parameters. Computers and Structures 1, 53–60 (2003)

    Article  MathSciNet  Google Scholar 

  9. Chen, G.S., Lurie, B.J., Wada, B.K.: Experimental Studies of Adaptive Structures for Precision Performance. AIAA Paper No. 89-1327-CP (1989)

    Google Scholar 

  10. Sun, C.T., Wang, R.T.: Enhancement of Frequency and Damping in Large Space Structures with Extendible Members. AIAA J. 12, 2269–2271 (1991)

    Article  Google Scholar 

  11. Xu, K., Warnitchai, P., Igusa, T.: Optimal Locations and Gains of Sensors and Actuators for Feedback Control. AIAA paper 93-1660, 3137–3145 (1993)

    Google Scholar 

  12. Abdullah, M.M.: Optimal Location and Gains of Feedback Controllers at Discrete Locations. AIAA J. 11, 2109–2116 (1998)

    Article  Google Scholar 

  13. Levine, W.S., Athans, M.: On the Determination of the Optimal Constant Output Feedback Gains for Linear Multivariable Systems. IEEE Trans. Automat. Contr. 1, 44–48 (1970)

    Article  MathSciNet  Google Scholar 

  14. Sepulveda, A.E., Jin, I.M., Schmit, L.A.J.: Optimal Placement of Active Elements in Control Augmented Structural Synthesis. AIAA Journal 10, 1906–1915 (1993)

    Article  Google Scholar 

  15. Tsahalis, D.T., Katsikas, S.K., Manolas, D.A.: A Genetic Algorithm for Optimal Positioning of Actuators in Active Noise Control: Results form the ASANCA Project. Aircraft Engineering and Aerospace Technology 3, 252–257 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yan, S., Zheng, K., Zhao, Q., Zhang, L. (2005). Optimal Placement of Active Members for Truss Structure Using Genetic Algorithm. In: Huang, DS., Zhang, XP., Huang, GB. (eds) Advances in Intelligent Computing. ICIC 2005. Lecture Notes in Computer Science, vol 3645. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11538356_40

Download citation

  • DOI: https://doi.org/10.1007/11538356_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28227-3

  • Online ISBN: 978-3-540-31907-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics