Context-Driven Model Refinement

  • Dennis Wagelaar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3599)


An important drive for Model-Driven Architecture is that many software applications have to be deployed on a variety of platforms and within a variety of contexts in general. Using software models, e.g. described in the Unified Modeling Language (UML), one can abstract from specific platforms. A software model can then be transformed to a refined model, given the context in which it should run. Currently, each target context requires its own model transformation. Only a limited number of contexts can be supported in this way. We propose a context-driven modelling framework that models each target context in a context model, described in the Web Ontology Language (OWL). Multiple reusable transformation rules are used, which are annotated with context constraints, based on the OWL context model. The framework can automatically select the transformation rules that are applicable for a concrete context.


Virtual Machine Model Transformation Transformation Rule Context Model Object Constraint Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Czarnecki, K., Helsen, S.: Classification of Model Transformation Approaches. In: OOPSLA 2003 Workshop on Generative Techniques in the context of Model Driven Architecture (2003)Google Scholar
  2. 2.
    Smith, M.K., Welty, C., McGuinness, D.L.: OWL Web Ontology Language Guide. World Wide Web Consortium (2004) W3C Recommendation February 10 (2004)Google Scholar
  3. 3.
    Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  4. 4.
    Möller, R., Haarslev, V.: Description Logics for the Semantic Web: Racer as a Basis for Building Agent Systems, Künstliche Intelligenz, pp. 10–15 (2003)Google Scholar
  5. 5.
    Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition 5, 199–220 (1993)CrossRefGoogle Scholar
  6. 6.
    Preuveneers, D., den Bergh, J.V., Wagelaar, D., Georges, A., Rigole, P., Clerckx, T., Berbers, Y., Coninx, K., Jonckers, V., Bosschere, K.D.: Towards an extensible context ontology for Ambient Intelligence. In: Proceedings of the Second European Symposium on Ambient Intelligence, Eindhoven, The Netherlands, pp. 148–159. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Open Mobile Alliance: User Agent Profile 2.0 Specification (2003), Version 20- May 2003Google Scholar
  8. 8.
    Klyne, G., Reynolds, F., Woodrow, C., Ohto, H., Hjelm, J., Butler, M.H., Tran, L.: Composite Capability/Preference Profiles (CC/PP): Structure and Vocabularies 1.0. World Wide Web Consortium (2004)Google Scholar
  9. 9.
    Noy, N.F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R.W., Musen, M.A.: Creating Semantic Web Contents with Protege-2000. IEEE Intelligent Systems 16, 60–71 (2001)Google Scholar
  10. 10.
    Object Management Group, Inc.: Unified Modeling Language Specification, Version 1.5, formal/03-03-01 (2003)Google Scholar
  11. 11.
    Bézivin, J., Dupé, G., Jouault, F., Pitette, G., Rougui, J.E.: First experiments with the ATL model transformation language: Transforming XSLT into XQuery. In: OOPSLA 2003 Workshop on Generative Techniques in the context of Model Driven Architecture (2003)Google Scholar
  12. 12.
    Tekinerdoğan, B., Akşit, M.: Synthesis Based Software Architecture Design. In: Akşit, M. (ed.) Software Architectures and Component Technology, pp. 143–173. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  13. 13.
    Kurtev, I., van den Berg, K.: A Synthesis-Based Approach to Transformations in an MDA Software Development Process. In: Rensink, A., ed.: CTIT Technical Report TR-CTIT-03-27, Enschede, The Netherlands, University of Twente, pp. 121–126 (2003)Google Scholar
  14. 14.
    Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Applications, 1st edn. Addison Wesley, Reading (2000)Google Scholar
  15. 15.
    Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. In: Proceedings of the 25th International Conference on Software Engineering (ICSE 2003), Portland, Oregon, USA, pp. 187–197. IEEE Computer Society, Los Alamitos (2003)CrossRefGoogle Scholar
  16. 16.
    Almeida, J.P., Dijkman, R., van Sinderen, M., Pires, L.F.: On the Notion of Abstract Platform in MDA Development. In: The 8th International IEEE Enterprise Distributed Object Computing Conference, Monterey, California, USA, pp. 253–263. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  17. 17.
    Tekinerdoğan, B., Bilir, S., Abatlevi, C.: Integrating Platform Selection Rules in the Model-Driven Architecture Approach. In: Aßmann, U. (ed.) Proceedings of Model Driven Architecture: Foundations and Applications (MDAFA 2004), Linköping, Sweden. Research Center for Integrational Software Engineering, Linköping University, pp. 184–200 (2004)Google Scholar
  18. 18.
    Bézivin, J., Devedžić, V., Djurić, D., Favreau, J., Gašević, D., Jouault, F.: An M3-Neutral infrastructure for bridging model engineering and ontology engineering. In: First International Conference on Interoperability of Enterprise Software and Applications (INTEROP-ESA 2005), Geneva, Switzerland. Springer, Heidelberg (2005)Google Scholar
  19. 19.
    Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., Müthig, D., Paech, B., Wüst, J., Zettel, J.: Component-Based Product Line Engineering with UML, 1st edn. Addison Wesley, Reading (2001)Google Scholar
  20. 20.
    Pelechano, V., Pastor, O., Insfrán, E.: Automated code generation of dynamic specializations: an approach based on design patterns and formal techniques. Data and Knowledge Engineering 40, 315–353 (2002)zbMATHCrossRefGoogle Scholar
  21. 21.
    Martinez, J.J., Salavert, I.R.: A Conceptual Model for Context-Aware Dynamic Architectures. In: Proceedings of the 23rd International Conference on Distributed Computing Systems Workshops (ICDCSW 2003), Providence, Rhode Island, USA, pp. 138–143. IEEE Computer Society, Los Alamitos (2003)CrossRefGoogle Scholar
  22. 22.
    D’Souza, D.F., Wills, A.C.: Objects, Components, and Frameworks with UML: The Catalysis(SM) Approach. Addison Wesley, Reading (1998)Google Scholar
  23. 23.
    Strang, T., Linnhoff-Popien, C., Frank, K.: CoOL: A Context Ontology Language to enable Contextual Interoperability. In: Proceedings of 4th IFIP WG 6.1 International Conference on Distributed Applications and Interoperable Systems (DAIS 2003), Paris, France, pp. 236–247. Springer, Heidelberg (2004)Google Scholar
  24. 24.
    Chen, H., Finin, T., Joshi, A.: An Ontology for Context-Aware Pervasive Computing Environments. Knowledge Engineering Review, 18, 197–207 (2004); Special Issue on Ontologies for Distributed SystemsGoogle Scholar
  25. 25.
    Gu, T., Wang, X.H., Pung, H.K., Zhang, D.Q.: An Ontology-based Context Model in Intelligent Environments. In: Proceedings of Communication Networks and Distributed Systems Modeling and Simulation Conference (CNDS 2004), San Diego, California, USA, pp. 270–275 (2004)Google Scholar
  26. 26.
    Henricksen, K., Indulska, J.: A Software Engineering Framework for Context-Aware Pervasive Computing. In: Proceedings of the 2nd IEEE International Conference on Pervasive Computing and Communications (PerCom 2004), Orlando, Florida, USA, pp. 77–86. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Dennis Wagelaar
    • 1
  1. 1.Vrije Universiteit BrusselBrusselsBelgium

Personalised recommendations