Advertisement

Level Sets of Functions and Symmetry Sets of Surface Sections

  • André Diatta
  • Peter Giblin
  • Brendan Guilfoyle
  • Wilhelm Klingenberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3604)

Abstract

We prove that the level sets of a real C s function of two variables near a non-degenerate critical point are of class C [s/2] and apply this to the study of planar sections of surfaces close to the singular section by the tangent plane at an elliptic or hyperbolic point, and in particular at an umbilic point. We go on to use the results to study symmetry sets of the planar sections. We also analyse one of the cases coming from a degenerate critical point, corresponding to an elliptic cusp of Gauss on a surface, where the differentiability is reduced to C [s/4]. However in all our applications we assume C  ∞  smoothness.

Keywords

Tangent Plane Medial Axis Surface Section Umbilic Point Hyperbolic Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banchoff, T.F., Gaffney, T., McCrory, C.: Cusps of Gauss Mappings. Pitman Research Notes in Mathematics, vol. 55 (1982)Google Scholar
  2. 2.
    Bruce, J.W., Giblin, P.J.: Growth, motion and one-parameter families of symmetry sets. In: Proc. Royal Soc. Edinburgh, vol. 104A, pp. 179–204 (1986)Google Scholar
  3. 3.
    Bruce, J.W., Giblin, P.J., Tari, F.: Ridges, crests and sub-parabolic lines of evolving surfaces. Int. J. Computer Vision 18, 195–210 (1996)CrossRefGoogle Scholar
  4. 4.
    Diatta, A., Giblin, P.J.: Vertices and inflexions of plane sections of surfaces in ℝ3’. In: Real and Complex Singularities 2004. LMS Lecture Notes in Maths, Cambridge University Press, Cambridge (2004) (to appear), http://www.liv.ac.uk/~pjgiblin Google Scholar
  5. 5.
    Diatta, A., Giblin, P.J.: Geometry of isophote curves. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 50–61. Springer, Heidelberg (2005), Available from http://www.liv.ac.uk/~pjgiblin CrossRefGoogle Scholar
  6. 6.
    Giblin, P.J.: Symmetry sets and medial axes in two and three dimensions. In: Cipolla, R., Martin, R. (eds.) The Mathematics of Surfaces IX, pp. 306–321. Springer, Heidelberg (2000)Google Scholar
  7. 7.
    Koenderink, J.J.: Solid Shape. MIT Press, Cambridge (1990)Google Scholar
  8. 8.
    Morris, R.J.: Liverpool Surface Modelling Package, http://www.amsta.leeds.ac.uk/~rjm/lsmp/ ; See also Morris, R.J.: The use of computer graphics for solving problems in singularity theory. In: Hege, H.-C., Polthier, K. (eds.) Visualization in Mathematics, pp. 173–187. Springer, Heidelberg (1997), http://www.scs.leeds.ac.uk/pfaf/lsmp/SingSurf.html Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • André Diatta
    • 1
  • Peter Giblin
    • 1
  • Brendan Guilfoyle
    • 2
  • Wilhelm Klingenberg
    • 3
  1. 1.University of LiverpoolUK
  2. 2.Institute of TechnologyTraleeIreland
  3. 3.University of DurhamUK

Personalised recommendations