Efficient Linear System Solvers for Mesh Processing

  • Mario Botsch
  • David Bommes
  • Leif Kobbelt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3604)


The use of polygonal mesh representations for freeform geometry enables the formulation of many important geometry processing tasks as the solution of one or several linear systems. As a consequence, the key ingredient for efficient algorithms is a fast procedure to solve linear systems. A large class of standard problems can further be shown to lead more specifically to sparse, symmetric, and positive definite systems, that allow for a numerically robust and efficient solution.

In this paper we discuss and evaluate the use of sparse direct solvers for such kind of systems in geometry processing applications, since in our experiments they turned out to be superior even to highly optimized multigrid methods, but at the same time were considerably easier to use and implement. Although the methods we present are well known in the field of high performance computing, we observed that they are in practice surprisingly rarely applied to geometry processing problems.


Multigrid Method Cholesky Factorization Iterative Solver Direct Solver Mesh Processing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Desbrun, M., Meyer, M., Schröder, P., Barr, A.H.: Implicit fairing of irregular meshes using diffusion and curvature flow. In: Proc. of ACM SIGGRAPH 1999, pp. 317–324 (1999)Google Scholar
  2. 2.
    Gill, P.R., Murray, W., Wright, M.: Practical Optimization. Academic Press, London (1981)zbMATHGoogle Scholar
  3. 3.
    Kobbelt, L.: Discrete fairing. In: Proc. on 7th IMA Conference on the Mathematics of Surfaces, pp. 101–131 (1997)Google Scholar
  4. 4.
    Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Hege, H.C., Polthier, K. (eds.) Visualization and Mathematics III, pp. 35–57. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Taubin, G.: A signal processing approach to fair surface design. In: Proc. of ACM SIGGRAPH 1995, pp. 351–358 (1995)Google Scholar
  6. 6.
    Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2, 15–36 (1993)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Desbrun, M., Meyer, M., Alliez, P.: Intrinsic parameterizations of surface meshes. In: Proc. of Eurographics 2002, pp. 209–218 (2002)Google Scholar
  8. 8.
    Kobbelt, L., Campagna, S., Vorsatz, J., Seidel, H.P.: Interactive multi-resolution modeling on arbitrary meshes. In: Proc. of ACM SIGGRAPH 1998, pp. 105–114 (1998)Google Scholar
  9. 9.
    Botsch, M., Kobbelt, L.: An intuitive framework for real-time freeform modeling. In: Proc. of ACM SIGGRAPH 2004, pp. 630–634 (2004)Google Scholar
  10. 10.
    Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., Seidel, H.P.: Laplacian surface editing. In: Proc. of Eurographics symposium on Geometry Processing 2004, pp. 179–188 (2004)Google Scholar
  11. 11.
    Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., Shum, H.Y.: Mesh editing with Poisson-based gradient field manipulation. Proc. of ACM SIGGRAPH 2004, 644–651 (2004)Google Scholar
  12. 12.
    Alexa, M.: Local control for mesh morphing. In: Proc. of Shape Modeling International 2001, pp. 209–215 (2001)Google Scholar
  13. 13.
    Alexa, M.: Differential coordinates for local mesh morphing and deformation. The Visual Computer 19, 105–114 (2003)zbMATHGoogle Scholar
  14. 14.
    Xu, D., Zhang, H., Wang, Q., Bao, H.: Poisson shape interpolation. In: Proc. of ACM symposium on Solid and Physical Modeling 2005 (2005)Google Scholar
  15. 15.
    Ni, X., Garland, M., Hart, J.C.: Fair morse functions for extracting the topological structure of a surface mesh. In: Proc. of ACM SIGGRAPH 2004, pp. 613–622 (2004)Google Scholar
  16. 16.
    Sun, J., Jia, J., Tang, C.K., Shum, H.Y.: Poisson matting. In: Proc. of ACM SIGGRAPH 2004, pp. 315–321 (2004)Google Scholar
  17. 17.
    Stam, J.: Stable fluids. In: Proc. of ACM SIGGRAPH 1999, pp. 121–128 (1999)Google Scholar
  18. 18.
    Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. In: Proc. of ACM SIGGRAPH 2002, pp. 362–371 (2002)Google Scholar
  19. 19.
    Demmel, J.W.: Applied numerical linear algebra. SIAM, Philadelphia (1997)zbMATHGoogle Scholar
  20. 20.
    Meurant, G.A.: Computer solution of large linear systems. Elsevier, Amsterdam (1999)zbMATHGoogle Scholar
  21. 21.
    Golub, G.H., Loan, C.F.V.: Matrix Computations. Johns Hopkins University Press, Baltimore (1989)zbMATHGoogle Scholar
  22. 22.
    Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)Google Scholar
  23. 23.
    Barrett, R., Berry, M., Chan, T.F., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V., Pozo, R., Romine, C., der Vorst, H.V.: Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd edn. SIAM, Philadelphia (1994)Google Scholar
  24. 24.
    Saad, Y., van der Vorst, H.A.: Iterative solution of linear systems in the 20th century. J. Comput. Appl. Math. 123, 1–33 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Hestenes, M., Stiefel, E.: Method of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand. 49, 409–436 (1952)zbMATHMathSciNetGoogle Scholar
  26. 26.
    Shewchuk, J.R.: An introduction to the conjugate gradient method without the agonizing pain. Technical report, Carnegie Mellon University (1994)Google Scholar
  27. 27.
    Hackbusch, W.: Multi-Grid Methods and Applications. Springer, Heidelberg (1986)Google Scholar
  28. 28.
    Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial, 2nd edn. SIAM, Philadelphia (2000)zbMATHCrossRefGoogle Scholar
  29. 29.
    Bornemann, F.A., Deuflhard, P.: The cascading multigrid method for elliptic problems. Num. Math. 75, 135–152 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Kobbelt, L., Campagna, S., Seidel, H.P.: A general framework for mesh decimation. In: Proc. of Graphics Interface 1998, pp. 43–50 (1998)Google Scholar
  31. 31.
    Garland, M.: Multiresolution modeling: Survey & future opportunities. In: Eurographics State of the Art Report 1999 (1999)Google Scholar
  32. 32.
    Aksoylu, B., Khodakovsky, A., Schröder, P.: Multilevel Solvers for Unstructured Surface Meshes. SIAM Journal on Scientific Computing 26, 1146–1165 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Ray, N., Levy, B.: Hierarchical Least Squares Conformal Map. In: Proc. of Pacific Graphics 2003, pp. 263–270 (2003)Google Scholar
  34. 34.
    George, A., Liu, J.W.H.: Computer Solution of Large Sparse Positive Definite Matrices. Prentice-Hall, Englewood Cliffs (1981)Google Scholar
  35. 35.
    Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In: Proc. of the 24th National Conference ACM, pp. 157–172 (1969)Google Scholar
  36. 36.
    Liu, J.W.H., Sherman, A.H.: Comparative analysis of the Cuthill-McKee and the reverse Cuthill-McKee ordering algorithms for sparse matrices. SIAM J. Numerical Analysis 2, 198–213 (1976)CrossRefMathSciNetGoogle Scholar
  37. 37.
    George, A., Liu, J.W.H.: The evolution of the minimum degree ordering algorithm. SIAM Review 31, 1–19 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Liu, J.W.H.: Modification of the minimum-degree algorithm by multiple elimination. ACM Trans. Math. Softw. 11, 141–153 (1985)zbMATHCrossRefGoogle Scholar
  39. 39.
    Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal of Sci. Comput. 20, 359–392 (1998)CrossRefMathSciNetGoogle Scholar
  40. 40.
    Toledo, S., Chen, D., Rotkin, V.: Taucs: A library of sparse linear solvers.,
  41. 41.
    Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Li, X.S., Liu, J.W.H.: A supernodal approach to sparse partial pivoting. SIAM Journal on Matrix Analysis and Applications 20, 720–755 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  42. 42.
    Renard, Y., Pommier, J.: Gmm++: a generic template matrix C++ library,
  43. 43.
    Aksoylu, B.: (personal communication)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Mario Botsch
    • 1
  • David Bommes
    • 1
  • Leif Kobbelt
    • 1
  1. 1.Computer Graphics GroupRWTH Aachen Technical UniversityGermany

Personalised recommendations