Advertisement

Approximate Rational Parameterization of Implicitly Defined Surfaces

  • Elmar Wurm
  • Bert Jüttler
  • Myung-Soo Kim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3604)

Abstract

We present a method for approximate rational parameterization of algebraic surfaces of arbitrary degree and genus (or more general implicitly defined surfaces), based on numerical optimization techniques. The method computes patches of maximal size on these surfaces subject to certain quality constraints. It can be used to generate local low degree approximations and rational approximations of non-parameterisable surfaces.

Keywords

Surface Patch Algebraic Surface Parameter Line Newton Step Implicit Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abhyankar, S., Bajaj, C.: Automatic Parameterization of Rational Curves and Surfaces I: Conics and Conicoids. Computer Aided Design 19, 11–14 (1987)zbMATHCrossRefGoogle Scholar
  2. 2.
    Abhyankar, S., Bajaj, C.: Automatic Parameterization of Rational Curves and Surfaces II: Cubics and Cubicoids. Computer Aided Design 19, 499–502 (1987)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bajaj, C.: The Emergence of Algebraic Curves and Surfaces. In: Martin, R. (ed.) Geometric Design – Directions in Geometric Computing, pp. 1–29. Information Geometers Press (1993)Google Scholar
  4. 4.
    Bajaj, C., Xu, G.: Spline Approximations of Real Algebraic Surfaces. J. Symb. Comp., Special Issue on Parametric Algebraic Curves and Applications 23, 315–333 (1997)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Bajaj, C., Holt, R.L., Netravali, A.N.: Rational Parametrizations of Nonsingular Real Cubic Surfaces. ACM Trans. Graph. 17(1), 1–31 (1998)CrossRefGoogle Scholar
  6. 6.
    Costa, A.: Examples of a Complete Minimal Immersion in of Genus One and Three Embedded Ends. Bil. Soc. Bras. Mat. 15, 47–54 (1984)zbMATHCrossRefGoogle Scholar
  7. 7.
    Hämmerlin, G., Hoffmann, K.H.: Numerical Mathematics. Springer, Heidelberg (1991)Google Scholar
  8. 8.
    Hartmann, E.: Numerical parameterization of curves and surfaces. Computer Aided Geometric Design 17, 251–266 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hoffman, D., Meeks, W.H.: III: A Complete Embedded Minimal Surfaces in with Genus One and Three Ends. J. Diff. Geom. 21, 109–127 (1985)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. A. K. Peters, Wellesley (1993)zbMATHGoogle Scholar
  11. 11.
    Jüttler, B., Felis, A.: Least-squares fitting of algebraic spline surfaces. Advances in Computational Mathematics 17, 135–152 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Jüttler, B., Rittenschober, K.: Using line congruences for parameterizing special algebraic surfaces. In: Martin, R., Bloor, M. (eds.) The Mathematics of Surfaces X, pp. 223–243. Springer, Berlin (2003)CrossRefGoogle Scholar
  13. 13.
    Kreyszig, E.: Differential Geometry. Dover, New York (1990)Google Scholar
  14. 14.
    Varadý, T., Martin, R.: Reverse Engineering. In: Farin, G., Hoschek, J., Kim, M.-S. (eds.) Handbook of Computer Aided Geometric Design, pp. 651–681. North-Holland, Amsterdam (2002)CrossRefGoogle Scholar
  15. 15.
    Pottmann, H., Leopoldseder, S.: A concept for parametric surface fitting which avoids the parametrization problem. Computer Aided Geometric Design 20, 343–362 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Sampson, P.: Fitting conic sections to very scattered data: an iterative refinement of the Bookstein algorithm. Computer Graphics and Image Processing 18, 97–108 (1982)CrossRefGoogle Scholar
  17. 17.
    Schicho, J.: Rational parametrization of surfaces, J. Symb. Comp. 26, 1–30 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Sederberg, T.W., Snively, J.: Parameterizing Cubic Algebraic Surfaces. In: Martin, R.R. (ed.) The Mathematics of Surfaces II, pp. 299–320. Oxford University Press, Oxford (1987)Google Scholar
  19. 19.
    Wurm, E., Jüttler, B.: Approximate Implicitization via Curve Fitting. In: Kobbelt, L., Schröder, P., Hoppe, H. (eds.) Symposium on Geometry Processing, pp. 240–247. Eurographics / ACM Siggraph, New York (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Elmar Wurm
    • 1
  • Bert Jüttler
    • 1
  • Myung-Soo Kim
    • 2
  1. 1.Institute of Applied GeometryJohannes Kepler UniversityLinzAustria
  2. 2.Department of Computer ScienceSeoul National UniversityKorea

Personalised recommendations