Advertisement

New Trends in Digital Shape Reconstruction

  • Tamás Várady
  • Michael A. Facello
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3604)

Abstract

There are various segmentation and surfacing methods to create CAD models from measured data. First the difficulties of creating a good surface structure over a polygonal mesh are investigated, followed by investigating the most important approaches according to the amount of user interaction, computational efficiency and surface quality. References to commercial systems are also added. The focus of the paper is to present (i) automatic surfacing and (ii) functional decomposition. New demands and emerging technologies are also identified to trace out current trends in digital shape reconstruction.

Keywords

Control Point Polygonal Mesh Good Surface Quality Functional Decomposition Curve Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alias Studio Tools: http://www.alias.com
  2. 2.
    Attene, M., Falcidieno, B., Rossignac, J., Spagnuolo, M.: Edge-Sharpener: Recovering sharp features in triangulations of non-adaptively re-meshed surfaces. In: Kobbelt, L., Schröeder, P., Hoppe, H. (eds.) Eurographics Symposium on Geometry Processing. The Eurographics Association (2003)Google Scholar
  3. 3.
    Benkö, P., Martin, R.R., Várady, T.: Algorithms for Reverse Engineering Boundary Representation Models. Computer Aided Design 33, 839–851 (2001)CrossRefGoogle Scholar
  4. 4.
    Benkö, P., Andor, L., Kós, G., Martin, R.R., Várady, T.: Constrained Fitting in Reverse Engineering. Computer Aided Geometric Design 19(1), 173–205 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Benkö, P., Várady, T.: Segmentation methods for smooth point regions of conventional engineering objects. Computer-Aided Design 36, 511–523 (2004)CrossRefGoogle Scholar
  6. 6.
    Bernardini, F., Rushmeier, H.: The 3D Model Acquisition Pipeline. Computer Graphics Forum 21(3), 149–172 (2002)CrossRefGoogle Scholar
  7. 7.
    Blacker, T.D., Stephenson, M.B.: Paving: A New Approach to Automated Quadrilateral Mesh Generation. International Journal for Numerical Methods in Engineering 32, 849–866Google Scholar
  8. 8.
  9. 9.
    Eck, M., Hoppe, H.: Automatic reconstruction of B-spline surfaces of arbitrary topological type. In: Proc. Siggraph Computer Graphics, pp. 325–334 (1996)Google Scholar
  10. 10.
    Edelsbrunner, H., Facello, M.A., Fu, P., Qian, J., Nekhayev, D.V.: Wrapping 3D scanning data. In: Ellson, R.N., Nurrep, J.H. (eds.) Proc. SPIE, Three-Dimensional Image Capture and Applications, vol. 3313, pp. 148–158 (1998)Google Scholar
  11. 11.
    Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discrete Comput. Geom. 30, 87–107 (2003)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Floater, M.S.: Parametrization and smooth approximation of surface triangulations. Computer Aided Geometric Design 14, 231–250 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Garland, M.: Multiresolution modeling: Survey and future opportunities. In: Eurographics 1999—State of the Art Reports, pp. 111–131 (1999)Google Scholar
  14. 14.
    Geomagic Studio: http://www.geomagic.com
  15. 15.
    Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. A. K. Peters, Wellesley (1993)zbMATHGoogle Scholar
  16. 16.
    ICEM Surf and RevEng: http://www.icem.com
  17. 17.
  18. 18.
    Itoh, T., Shimada, K.: Automatic Conversion of Triangular Meshes Into Quadrilateral Meshes with Directionality. International Journal of CAD/CAM 1, 11–21 (2002)Google Scholar
  19. 19.
    Kós, G., Martin, R.R., Várady, T.: Methods to recover constant radius rolling ball blends in reverse engineering. Computer Aided Geometric Design 17, 127–160 (2000)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Kós, G., Várady, T.: Parameterizing Complex Triangular Meshes. In: Lyche, T., Mazure, M.-L., Schumaker, L.L. (eds.) Curve and Surface Design, Saint-Malo, pp. 265–274. Nashboro Press (2002)Google Scholar
  21. 21.
    Krishnamurthy, V., Levoy, M.: Fitting smooth surfaces to dense polygonal meshes. In: Proc. Siggraph Computer Graphics, pp. 313–324 (1996)Google Scholar
  22. 22.
    Langbein, F.C., Marshall, A.D., Martin, R.R.: Choosing consistent constraints for beautification of reverse engineered geometric models. Computer-Aided Design 36, 261–278 (2004)CrossRefGoogle Scholar
  23. 23.
    Lee, A., Sweldens, W., Schroeder, P., Cowsar, L., Dobkin, D.: MAPS: multiresolution adaptive parametrization of surfaces. In: Proc. SIGGRAPH Comput. Graphics, pp. 95–104 (1998)Google Scholar
  24. 24.
    Nakamoto, A.: Diagonal transformations in quadrangulations of surfaces. J. Graph Theory 21, 289–299 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Owen, S.J.: A Survey of Unstructured Mesh Generation Technology. In: Proceedings 7th International Meshing Roundtable, Dearborn, MI (October 1998), http://www.andrew.cmu.edu/user/sowen/survey/index.html
  26. 26.
  27. 27.
    Petitjean, S.: A survey of methods for recovering quadrics in triangle meshes. ACM Computing Surveys (2002)Google Scholar
  28. 28.
  29. 29.
  30. 30.
  31. 31.
    Renner, G., Weiss, V.: Exact and approximate computation of B-spline curves on surfaces. Computer-Aided Design 36, 351–362 (2004)CrossRefzbMATHGoogle Scholar
  32. 32.
    Sabin, M.: Subdivision Surfaces. In: Farin, G., Hoschek, J., Kim, M.-S. (eds.) Handbook of Computer Aided Geometric Design, ch. 12, North-Holland, Amsterdam (2002)Google Scholar
  33. 33.
    Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.H.: T-splines and T-NURCCs. ACM Transactions on Graphics 23, 477–484 (2003)CrossRefGoogle Scholar
  34. 34.
  35. 35.
    Várady, T., Martin, R.: Reverse Engineering. In: Farin, G., Hoschek, J., Kim, M.-S. (eds.) Handbook of Computer Aided Geometric Design, ch. 26, North-Holland, Amsterdam (2002)Google Scholar
  36. 36.
    Weiss, V., Andor, L., Renner, G., V’arady, T.: Advanced surface fitting techniques. Computer Aided Geometric Design 19(1), 19–42 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Werghi, N., Fisher, R., Robertson, C., Ashbrook, A.: Object reconstruction by incorporating geometric constraints in reverse engineering. Computer-Aided Design 31, 363–399 (1999)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Tamás Várady
    • 1
    • 2
  • Michael A. Facello
    • 1
  1. 1.Raindrop Geomagic, Inc.USA
  2. 2.Raindrop Geomagic HungaryBudapestHungary

Personalised recommendations