Advertisement

Spatial Pythagorean Hodograph Quintics and the Approximation of Pipe Surfaces

  • Zbyněk Šír
  • Bert Jüttler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3604)

Abstract

As observed by Farouki et al.[9], any set of C 1 space boundary data (two points with associated first derivatives) can be interpolated by a Pythagorean hodograph (PH) curve of degree 5. In general there exists a two dimensional family of interpolants.

In this paper we study the properties of this family in more detail. We introduce a geometrically invariant parameterization of the family of interpolants. This parameterization is used to identify a particular solution, which has the following properties. Firstly, it preserves planarity, i.e., the interpolant to planar data is a planar PH curve. Secondly, it has the best possible approximation order (4). Thirdly, it is symmetric in the sense that the interpolant of the “reversed” set of boundary data is simply the “reversed” original interpolant. These observations lead to a fast and precise algorithm for converting any (possibly piecewise) analytical curve into a piecewise PH curve of degree 5 which is globally C 1.

Finally we exploit the rational frames associated with any space PH curve (the Euler-Rodrigues frame) in order to obtain a simple rational approximation of pipe surfaces with a piecewise analytical spine curve and we analyze its approximation order.

Keywords

Tool Path Approximation Order Standard Position Hermite Interpolation Reversed Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahn, M.-H., Kim, G.-I., Lee, C.-N.: Geometry of root-related parameters of PH curves. Appl. Math. Lett. 16(1), 49–57 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Choi, H.I., Lee, D.S., Moon, H.P.: Clifford algebra, spin representation, and rational parameterization of curves and surfaces. Adv. Comput. Math. 17, 5–48 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Choi, H.I., Han, C.Y.: Euler Rodrigues frames on spatial Pythagorean-hodograph curves, Comput. Aided Geom. Design 19, 603–620 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Dietz, R., Hoschek, J., Jüttler, B.: An algebraic approach to curves and surfaces on the sphere and on other quadrics, Comp. Aided Geom. Design 10, 211–229 (1993)zbMATHCrossRefGoogle Scholar
  5. 5.
    Farouki, R.T., Sakkalis, T.: Pythagorean-hodograph space curves, Adv. Comput. Math. 2, 41–66 (1994)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Farouki, R.T., Neff, C.A.: Hermite interpolation by Pythagorean-hodograph quintics. Math. Comput. 64, 1589–1609 (1995)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Farouki, R.T., Saitou, K., Tsai, Y.-F.: Least-squares tool path approximation with Pythagorean-hodograph curves for high-speed CNC machining. The Mathematics of Surfaces VIII, pp. 245–264. Information Geometers, Winchester (1998)Google Scholar
  8. 8.
    Farouki, R.T., Kuspa, B.K., Manni, C., Sestini, A.: Efficient solution of the complex quadratic tridiagonal system for \(C\sp 2\) PH quintic splines. Numer. Alg. 27, 35–60 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Farouki, R.T., Al-Kandari, M., Sakkalis, T.: Hermite interpolation by rotation-invariant spatial Pythagorean-hodograph curves. Adv. Comput. Math. 17, 369–383 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Farouki, R.T., Al-Kandari, M., Sakkalis, T.: Structural invariance of spatial Pythagorean hodographs, Comp. Aided Geom. Design 19, 395–407 (2002)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Farouki, R.T.: Pythagorean hodograph curves. In: Farin, G., Hoschek, J., Kim, M.-S. (eds.) Handbook of Computer Aided Geometric Design, pp. 405–427. North-Holland, Amsterdam (2002)CrossRefGoogle Scholar
  12. 12.
    Farouki, R.T., Manni, C., Sestini, A.: Spatial \(C\sp 2\) PH quintic splines. In: Curve and surface design (Saint-Malo, 2002). Mod. Methods Math, pp. 147–156. Nashboro Press (2003)Google Scholar
  13. 13.
    Farouki, R.T., Han, C.Y.: Rational approximation schemes for rotation-minimizing frames on Pythagorean- hodograph curves. Computer Aided Geometric Design 20, 435–454 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Farouki, R.T., Han, C.Y., Manni, C., Sestini, A.: Characterization and construction of helical polynomial space curves. J. Comput. Appl. Math. 162(2), 365–392 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Feichtinger, R.: Hermite–Interpolation mit PH–Quintiken, Diplomarbeit (MSc. thesis), Johannes Kepler University, Linz, Austria (2005) (in progress)Google Scholar
  16. 16.
    Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. AK Peters, Wellesley (1996)Google Scholar
  17. 17.
    Jüttler, B., Mäurer, C.: Cubic Pythagorean Hodograph Spline Curves and Applications to Sweep Surface Modeling. Comp.–Aided Design 31, 73–83 (1999)zbMATHCrossRefGoogle Scholar
  18. 18.
    Jüttler, B.: Hermite interpolation by Pythagorean hodograph curves of degree seven. Math. Comp. 70, 1089–1111 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Kuipers, J.B.: Quaternions and rotation sequences. Princeton University Press, Princeton (1999)zbMATHGoogle Scholar
  20. 20.
    Moon, H.P., Farouki, R.T., Choi, H.I.: Construction and shape analysis of PH quintic Hermite interpolants. Comp. Aided Geom. Design 18, 93–115 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Šír, Z., Jüttler, B.: Constructing acceleration continuous tool paths using pythagorean hodograph curves. Mech. Mach. Theory (2005) (in press)Google Scholar
  22. 22.
    Meek, D.S., Walton, D.J.: Geometric Hermite interpolation with Tschirnhausen cubics. Journal of Computational and Applied Mathematics 81, 299–309 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Walton, D.J., Meek, D.S.: A generalisation of the Pythagorean hodograph quintic spiral. J. Comput. Appl. Math. 172(2), 271–287 (2004)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Zbyněk Šír
    • 1
  • Bert Jüttler
    • 1
  1. 1.Institute of Applied GeometryJohannes Kepler UniversityLinzAustria

Personalised recommendations