Bézier Surfaces of Minimal Internal Energy

  • Yongwei Miao
  • Huahao Shou
  • Jieqing Feng
  • Qunsheng Peng
  • A. Robin Forrest
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3604)


In this paper the variational problems of finding Bézier surfaces that minimize the bending energy functional with prescribed border for both cases of triangular and rectangular are investigated. As a result, two new bending energy masks for finding Bézier surfaces of minimal bending energy for both triangular and rectangular cases are proposed. Experimental comparisons of these two new bending energy masks with existing Dirichlet, Laplacian, harmonic and average masks are performed which show that bending energy masks are among the best.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnal, A., Lluch, A., Monterde, J.: Triangular Bézier surfaces of minimal area. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2669, pp. 366–375. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Brunnett, G., Hagen, H., Santarelli, P.: Variational design of curves and surfaces. Surv. Math. Industry 3(27), 1–27 (1993)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Cosín, C., Monterde, J.: Bézier surfaces of minimal area. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) ICCS-ComputSci 2002. LNCS, vol. 2330, pp. 72–81. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall International, Englewood Cliffs (1976)zbMATHGoogle Scholar
  5. 5.
    Farin, G., Hansford, D.: Discrete Coons patches. Computer Aided Geometric Design 16(7), 691–700 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Floater, M., Reimers, M.: Meshless parameterization and surface reconstruction. Computer Aided Geometric Design 18(2), 77–92 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Gallier, J.: Curves and Surfaces in Geometric Modeling. Morgan Kaufmann publishers, San Francisco (2000)Google Scholar
  8. 8.
    Greiner, G., Loos, J., Wesselink, W.: Data dependent thin plate energy and its use in interactive surface modeling. Computer Graphics Forum 15(3), 175–186 (1996)CrossRefGoogle Scholar
  9. 9.
    Hagen, H.: Variational principles in curve and surface design. In: Fisher, R.B. (ed.) Proceedings of the 5th IMA Conference on the Mathematics of Surfaces, Edinburgh, pp. 169–190. Clarendon Press, Oxford (1994)Google Scholar
  10. 10.
    Monterde, J.: The Plateau-Bézier problem. In: Wilson, M.J., Martin, R.R. (eds.) Mathematics of Surfaces. LNCS, vol. 2768, pp. 262–273. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Monterde, J.: Bézier surfaces of minimal area: The Dirichlet approach. Computer Aided Geometric Design 21(2), 117–136 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Petitjean, S.: A survey of methods for recovering quadrics in triangular meshes. ACM Comput. Surv. 34(2), 211–262 (2002)CrossRefGoogle Scholar
  13. 13.
    Schneider, R., Kobbelt, L.: Geometric fairing of irregular meshes for free-form surface design. Computer Aided Geometric Design 18(4), 359–379 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Terzopoulos, D., Platt, J., Barr, A., Fleischer, K.: Elastically deformable models. In: ACM SIGGRAPH 1987, pp. 205–214 (1987)Google Scholar
  15. 15.
    Veltkamp, R., Wesselink, W.: Modeling 3d Curves of minimal energy. Computer Graphics Forum 14(3), 97–110 (1995)CrossRefGoogle Scholar
  16. 16.
    Veltkamp, R., Wesselink, W.: Variational modeling of triangular Bézier surfaces. Technical reports of Utrecht University, report no: UU-CS-1996-40 (1996)Google Scholar
  17. 17.
    Welch, W., Witkin, A.: Variational surface modeling. In: ACM SIGGRAPH 1992, pp. 157–166 (1992)Google Scholar
  18. 18.
    Welch, W., Witkin, A.: Free-Form shape design using triangulated surfaces. In: ACM SIGGRAPH 1994, pp. 247–256 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Yongwei Miao
    • 1
    • 2
  • Huahao Shou
    • 2
  • Jieqing Feng
    • 1
  • Qunsheng Peng
    • 1
  • A. Robin Forrest
    • 3
  1. 1.State Key Lab. of CAD&CGZhejiang UniversityHangzhouP.R.China
  2. 2.College of ScienceZhejiang University of TechnologyHangzhouP.R.China
  3. 3.School of Computing SciencesUniversity of East AngliaNorwichU.K.

Personalised recommendations