A Hybrid Approach to Extracting Tooth Models from CT Volumes

  • Sheng-Hui Liao
  • Wei Han
  • Ruo-Feng Tong
  • Jin-Xiang Dong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3604)


As the tooth root has similar bone density to the jaw where it is embedded, its complete boundaries are either missing or at low contrast in the computed tomography (CT) volume data. This paper proposes a hybrid method to create a ‘best-fit’ polygonal surface of the patient-specific tooth. First, a level-set based shape prior segmentation procedure is employed to extract a coarse whole tooth surface model from CT volume. The surface model produced captures the smooth root part, while losing details of the tooth crown. So, a post process – thin-plate splines transform, involving a consistent semi-automatic landmarks selection and re-placing procedure – is used to warp the crown part of the coarse surface to recover the patient-specific local details of the crown.


Radial Basis Function Surface Model Anatomical Landmark Tooth Root Local Detail 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nishii, Y., Nojima, K., Takane, Y., Isshiki, Y.: Integration of the maxillofacial three-dimensional CT image and the three-dimensional dental surface image. The Journal of Japan Orthodontic Society 57, 189–194 (1998)Google Scholar
  2. 2.
    Terai, H., Shimahara, M., Sakinaka, Y., Tajima, S.: Accuracy of Integration of Dental Casts in Three-Dimensional Models. J. Oral Maxillofacial Surgery 57, 662–665 (1999)CrossRefGoogle Scholar
  3. 3.
    Enciso, R.: John P. Lewis, U. Neumann, and J. Mah: 3D Tooth Shape from Radiographs using Thin-Plate Splines. In: MMVR11 - NextMed: Health Horizon, The 11th Annual Medicine Meets Virtual Reality Conference, Newport Beach, California, pp. 22–25 (2003)Google Scholar
  4. 4.
    Leventon, M.E., Grimson, W.E., Faugeraus, O.: Statistical shape influence in geodesic active contours. In: Proc. IEEE Conf. Computer Vision and Patt. Recog., pp. 316–323Google Scholar
  5. 5.
    Chen, Y., Tagare, H., Thiruvenkadam, S., Huang, F., Wilson, D., Gopinath, K., Briggs, R., Geiser, E.: Using prior shapes in geometric active contours in a variational framework. International Journal of Computer Vision 50(3), 315–328 (2002)zbMATHCrossRefGoogle Scholar
  6. 6.
    Cremers, D., Sochen, N., Schnorr, C.: Towards recognition-based variational segmentation using shape priors and dynamic labeling. In: Griffith, L. (ed.) Scale-Space 2003. LNCS, vol. 2695, pp. 388–400. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22(1), 61–79 (1997)zbMATHCrossRefGoogle Scholar
  8. 8.
    Bookstein, F.L.: Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 567–585 (1989)zbMATHCrossRefGoogle Scholar
  9. 9.
    Carr, J.C., Fright, W.R., Beatson, R.K.: Surface interpolation with radial basis functions for medical imaging. IEEE Transactions on Medical Imaging 16, 96–107 (1997)CrossRefGoogle Scholar
  10. 10.
    Fang, S., Raghavan, R., Richtsmeier, J.T.: Volume Morphing Methods for Landmark Based 3D Image Deformation. In: SPIE International Symposium on Medical Imaging, Newport Beach, CA, vol. 2710, pp. 404–415 (1996)Google Scholar
  11. 11.
    Franke, R., Nielson, G.M.: Scattered Data Interpolation and Applications: A Tutorial and Survey. In: Hagen, H., Roller, D. (eds.) Geometric Modelling: Methods and Their Application, pp. 131–160. Springer, Berlin (1991)Google Scholar
  12. 12.
    Rohr, K., Stiehl, H.S., Sprengel, R., Beil, W., Buzug, T.M., Weese, J., Kuhn, M.H.: Point-based elastic registration of medical image data using approximating thin-plate splines. In: Höhne, K.H., Kikinis, R. (eds.) VBC 1996. LNCS, vol. 1131, pp. 297–306. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  13. 13.
    Hartkens, T., Rohr, K., Stiehl, H.S.: Evaluation of 3D Operators for the Detection of Anatomical Point Landmarks in MR and CT Images. Computer Vision and Image Understanding 86(2), 118–136 (2002)zbMATHCrossRefGoogle Scholar
  14. 14.
    Lewis, J., Hwang, H.-J., Neumann, U., Enciso, R.: Smart Point Landmark Distribution for Thin-Plate Splines. In: Proc. SPIE Medical Imaging, San Diego, pp. 1236–1243 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Sheng-Hui Liao
    • 1
  • Wei Han
    • 1
  • Ruo-Feng Tong
    • 1
  • Jin-Xiang Dong
    • 1
  1. 1.State Key Laboratory of CAD and CG, Department of Computer Science, and EngineeringZhejiang UniversityChina

Personalised recommendations