The Importance of Polynomial Reproduction in Piecewise-Uniform Subdivision

  • Adi Levin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3604)


We survey a number of related methods, which have been published by the author and collaborators, in the field of subdivision schemes for curves and surfaces. The theory presented in these works relies mainly on the notion of polynomial reproduction, i.e. the ability of a scheme to reproduce all polynomials up to a certain degree as limit functions. We demonstrate that the study of polynomial reproduction is central to smoothness analysis and to approximation. In particular, we show how to exploit polynomial reproduction in the context of piecewise-uniform stationary subdivision. The applications include boundary treatments for subdivision surfaces, interpolation of curves by surfaces, subdivision stencils around extraordinary vertices (construction of C 2 schemes), as well as schemes that involve different kinds of grids (triangular / quadrilateral).


Limit Function Subdivision Scheme Polynomial Generation Subdivision Surface Subdivision Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary Subdivision. Memoirs of AMS, vol. 453. American Mathematical Society, Providence (1991)Google Scholar
  2. 2.
    Levin, A.: Polynomial generation and quasi-interpolation in stationary non-uniform subdivision. Computer Aided Geometric Design 20(1), 41–60 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Levin, A.: Combined Subdivision Schemes. PhD thesis, Tel-Aviv university (2000)Google Scholar
  4. 4.
    Levin, A., Levin, D.: Analysis of quasi-uniform subdivision. Applied and Computational Harmonic Analysis 15(1), 18–32 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Schaefer, S., Warren, J.: On c 2 triangle/quad subdivision. ACM Transactions on Graphics (2004) (accepted)Google Scholar
  6. 6.
    Stam, J., Loop, C.: Quad/triangle subdivision. Computer Graphics Forum 22(1), 79–85 (2003)CrossRefGoogle Scholar
  7. 7.
    Hakenberg, J.: Smooth subdivision for mixed volumetric meshes. Master’s thesis, Rice University, Department of Computer Science (2004)Google Scholar
  8. 8.
    Zulti, A., Levin, A., Levin, D., Teicher, M.: c 2 subdivision over triangulations with one extraordinary point. Computer Aided Geometric Design (2004) (to appear)Google Scholar
  9. 9.
    Reif, U.: A unified approach to subdivision algorithms near extraordinary points. Computer Aided Geometric Design 12, 153–174 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Warren, J., Weimer, H.: Subdivision Methods for Geometric Design. Morgan Kaufmann, San Francisco (2002)Google Scholar
  11. 11.
    Zorin, D.: Smoothness of stationary subdivision on irregular meshes (1998) (preprint )Google Scholar
  12. 12.
    Levin, A.: Interpolating nets of curves by smooth subdivision surfaces. In: Proceedings of SIGGRAPH 1999, Computer Graphics Proceedings. Annual Conference Series, pp. 57–64 (1999)Google Scholar
  13. 13.
    Levin, A.: Filling n-sided holes using combined subdivision schemes. In: Laurent, P.J., Sablonniere, P., Schumaker, L.L. (eds.) Curve And Surface Design, pp. 221–228. Vanderbilt University Press, Nashville (1999)Google Scholar
  14. 14.
    Dyn, N.: Subdivision schemes in computer aided geometric design. In: Light, W.A. (ed.) Advances in Numerical Analysis II, Subdivision algorithms and radial functions, pp. 36–104. Oxford University Press, Oxford (1992)Google Scholar
  15. 15.
    Dyn, N., Greogory, J.A., Levin, D.: Piecewise uniform subdivision schemes. In: Dahlen, M., Lyche, T., Schumaker, L. (eds.) Mathematical Methods for Curves and Surfaces, pp. 111–120. Vanderbilt University Press, Nashville (1995)Google Scholar
  16. 16.
    Ron, A.: Wavelets and their associated operators. In: Chui, C.K., Schumaker, L.L. (eds.) Approximation Theory IX, pp. 283–317. Vanderbilt University Press, Nashville (1998)Google Scholar
  17. 17.
    de Boor, C.: Quasiinterpolants and approximation power of multivariate splines. In: Gasca, M., Michelli, C.A. (eds.) Computation of curves and surfaces, pp. 313–345. Kluwer Academic Publishers, Dordrecht (1990)Google Scholar
  18. 18.
    de Boor, C., Ron, A.: The exponentials in the span of the multiinteger translates of a compactly supported function: quasiinterpolation and approximation order. Journal of London Mathematical Society 45(2), 519–535 (1992)CrossRefGoogle Scholar
  19. 19.
    Hoppe, H., DeRose, T., Duchamp, T., Halstead, M., Jin, H., McDonald, J., Schweitzer, J., Stuetzle, W.: Piecewise smooth surface reconstruction. Computer graphics 28(3), 295–302 (1994)Google Scholar
  20. 20.
    Schweitzer, J.: Analysis and Applications of Subdivision Surfaces. PhD thesis, University of Washington, Seattle (1996)Google Scholar
  21. 21.
    Biermann, H., Levin, A., Zorin, D.: Piecewise smooth subdivision surfaces with normal control. In: Proceedings of SIGGRAPH 2000, Computer Graphics Proceedings. Annual Conference Series, pp. 113–120 (2000)Google Scholar
  22. 22.
    Levin, A.: Combined subdivision schemes for the design of surfaces satisfying boundary conditions. Computer Aided Geometric Design 16(5), 345–354 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Daubechies, I., Guskov, I., Sweldens, W.: Regularity of irregular subdivision. Constructive Approximation 15, 381–426 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    de Boor, C.: Cutting corners always works. Computer Aided Geometric Design 4, 125–131 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Dyn, N., Greogory, J.A., Levin, D.: A four-point interpolatory subdivision scheme for curve design. Computer Aided Geometric Design 4, 257–268 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Deslauriers, G., Dubuc, S.: Symmetric iterative interpolation. Constructive Approximation 5, 49–68 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Catmull, E., Clark, J.: Recursively generated b-spline surfaces on arbitrary topological meshes. Computer Aided Design 10, 350–355 (1978)CrossRefGoogle Scholar
  28. 28.
    Loop, C.: Smooth spline surfaces based on triangles. Master’s thesis, University of Utah, Department of Mathematics (1987)Google Scholar
  29. 29.
    Prautzsch, H., Umlauf, G.: A g 2 subdivision algorithm. In: Farin, G., Bieri, H., Brunnet, G., DeRose, T. (eds.) Geometric Modeling, Computing Supplements, pp. 217–224. Springer, New York (1998)Google Scholar
  30. 30.
    Prautzsch, H., Reif, U.: Degree estimates of c k piecewise polynomial subdivision surfaces. Advances in Computational Mathematics 10, 209–217 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Prautzsch, H.: Freeform splines. Computer Aided Geometric Design 14, 201–206 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Reif, U.: Turbs: Topologically unrestricted b-splines. Constructive Approximation 4, 55–77 (1998)MathSciNetGoogle Scholar
  33. 33.
    Zulti, A., Levin, A., Levin, D., Taicher, M.: An electronic appendix to the paper: c2 subdivision over triangulations with one extraordinary point (2004),
  34. 34.
    Dyn, N., Greogory, J.A., Levin, D.: A butterfly subdivision scheme for surface interpolation with tension control. ACM Transactions on Graphics 9, 160–169 (1990)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Adi Levin
    • 1
  1. 1.Cadent LtdOr-YehudaIsrael

Personalised recommendations