Advertisement

Multi-sided Attribute Based Modeling

  • Kun Gao
  • Alyn Rockwood
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3604)

Abstract

We consider the problem of defining multi-sided patches in a system that enables G2 continuity. The technology is based on finding the weighted least squares solution of points on given input curves where a separate parameter space with control structures determines its weights. It is a generalization of Shepard’s method to a parameterized vector solution. The method generates surface patches that satisfy certain minimal energy conditions. it employs any parametric curve and points as controls for defining the surface.

Keywords

Attribute Function Attribute Curve Parametric Curf Minimal Energy Condition Neighboring Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ghostasby, A.: Image Registration by Local Approximation Methods. Image and Vision Computing 6(4), 255–261 (1988)CrossRefGoogle Scholar
  2. 2.
    Hermann, T., et al.: Geometrical Criteria on the Higher Order Smoothness of Composite Surfaces. Computer Aided Geometric Design 16, 907–911 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. A. K. Peters, Wellesley (1993)zbMATHGoogle Scholar
  4. 4.
    Levin, A.: Interpolating Nets of Curves by Smooth Subdivision Surfaces. In: ACM SIGGRAPH, pp. 57–64 (1999)Google Scholar
  5. 5.
    Malraison, P.: Multi-sided Surfaces: a survey. In: Laurent, P.-J., Sablonière, P., Schumaker, L. (eds.) Curve and Surface Design, pp. 246–256 (1999)Google Scholar
  6. 6.
    Schneider, J.: Solving the Nearest Point on the Curve Problem. Graphics Gems, 607–612 (1990)Google Scholar
  7. 7.
    Sederberg, T., et al.: T-splines and T-NURCCs. In: ACM SIGGRAPH, pp. 477–484 (2003)Google Scholar
  8. 8.
    Sederberg, T., et al.: T-spline Simplification and Local Refinement. In: ACM SIGGRAPH, pp. 276–283 (2004)Google Scholar
  9. 9.
    Singh, K., Fiume, E.: Wires: a Geometric Deformation Technique. In: ACM SIGGRAPH, pp. 405–414 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Kun Gao
    • 1
  • Alyn Rockwood
    • 1
  1. 1.D*Syn CorpBlack ForestUSA

Personalised recommendations