Advertisement

Conversion of Dupin Cyclide Patches into Rational Biquadratic Bézier Form

  • Sebti Foufou
  • Lionel Garnier
  • Michael J. Pratt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3604)

Abstract

This paper uses the symmetry properties of circles and Bernstein polynomials to establish a series of interesting barycentric properties of rational biquadratic Bézier patches. A robust algorithm is presented, based on these properties, for the conversion of Dupin cyclide patches into Bézier form. A set of conversion examples illustrates the use of this algorithm.

Keywords

Control Point Curvature Line Geometric Design Median Plane Negative Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Piegl, L., Tiller, W.: A menagerie of rational B-spline circles. IEEE Computer Graphics and Applications 9, 46–56 (1989)CrossRefGoogle Scholar
  2. 2.
    Forrest, A.R.: Curves and Surfaces for Computer-Aided Design. PhD thesis, University of Cambridge, UK (1968)Google Scholar
  3. 3.
    Demengel, G., Pouget, J.: Mathématiques des Courbes et des Surfaces: Modèles de Bézier, des B-Splines et des NURBS. vol. 1. Ellipse (1998)Google Scholar
  4. 4.
    Hoschek, J., Lasser, D.: Fundamentals of Computer Aided Geometric Design. A.K.Peters, Wellesley (1993)zbMATHGoogle Scholar
  5. 5.
    Pratt, M.J.: Cyclides in computer aided geometric design. Computer Aided Geometric Design 7, 221–242 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chandru, V., Dutta, D., Hoffmann, C.M.: Variable radius blending using Dupin cyclides. In: Wozny, M., Turner, J.U., Preiss, K. (eds.) Geometric Modelling for Product Engineering, North-Holland Publ. Co, Amsterdam (1990) ; In: Proc. IFIP/NSF Workshop on Geometric Modelling, Rensselaerville, NY (September 1988)Google Scholar
  7. 7.
    Degen, W.L.F.: Generalized cyclides for use in CAGD. In: Bowyer, A. (ed.) Computer-Aided Surface Geometry and Design, pp. 349–363. Oxford University Press, Oxford (1994); In: Proc. 4th IMA Conference on the Mathematics of Surfaces, Bath, UK (September 1990)Google Scholar
  8. 8.
    Pratt, M.J.: Cyclides in computer aided geometric design II. Computer Aided Geometric Design 12, 131–152 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dutta, D., Martin, R.R., Pratt, M.J.: Cyclides in surface and solid modeling. IEEE Computer Graphics and Applications 13, 53–59 (1993)CrossRefGoogle Scholar
  10. 10.
    Paluszny, M., Boehm, W.: General cyclides. Computer Aided Geometric Design 15, 699–710 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Shene, C.: Blending two cones with Dupin cyclides. Computer Aided Geometric Design 15, 643–673 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Farin, G.: Curves And Surfaces, 3rd edn. Academic Press, London (1993)Google Scholar
  13. 13.
    Aumann, G.: Curvature continuous connections of cones and cylinders. Computer-aided Design 27, 293–301 (1995)zbMATHCrossRefGoogle Scholar
  14. 14.
    Shene, C.: Do blending and offsetting commute for Dupin cyclides? Computer Aided Geometric Design 17, 891–910 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Wallner, J., Pottmann, H.: Rational blending surfaces between quadrics. Computer Aided Geometric Design 14, 407–419 (1997)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Sebti Foufou
    • 1
  • Lionel Garnier
    • 1
  • Michael J. Pratt
    • 2
  1. 1.LE2I, UMR CNRS 5158, UFR SciencesUniversité de BourgogneDijon CedexFrance
  2. 2.LMR SystemsCarlton, BedfordUK

Personalised recommendations