Skip to main content

On Approximating Real-World Halting Problems

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3623))

Abstract

No algorithm can of course solve the Halting Problem, that is, decide within finite time always correctly whether a given program halts on a certain given input. It might however be able to give correct answers for ‘most’ instances and thus solve it at least approximately. Whether and how well such approximations are feasible highly depends on the underlying encodings and in particular the Gödelization (programming system) which in practice usually arises from some programming language.

We consider BrainF*ck (BF), a simple yet Turing-complete real-world programming language over an eight letter alphabet, and prove that the natural enumeration of its syntactically correct sources codes induces a both efficient and dense Gödelization in the sense of [Jakoby&Schindelhauer’99]. It follows that any algorithm M approximating the Halting Problem for BF errs on at least a constant fraction ε M > 0 of all instances of size n for infinitely many n.

Next we improve this result by showing that, in every dense Gödelization, this constant lower bound ε to be independent of M; while, the other hand, the Halting Problem does admit approximation up to arbitrary fraction δ> 0 by an appropriate algorithm M δ handling instances of size n for infinitely many n. The last two results complement work by [Lynch’74].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bailey, D.F.: Counting Arrangements of 1’s and -1’s. Mathematics Magazine 69, 128–131 (1996)

    MATH  MathSciNet  Google Scholar 

  2. Book, R.V.: Telly languages and complexity classes. Information and Control 26(2), 186–193 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  3. Calude, C.S., Dinneen, M.J., Shu, C.-K.: Computing a Glimpse of Randomness. Experimental Mathematics 11(3), 361–370 (2001)

    Google Scholar 

  4. Calude, C.S., Hertling, P., Khoussainov, B., Wang, Y.: Recursively enumerable reals and Chaitin Ω numbers. Theoretical Computer Science 255, 125–149 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chaitin, G.J.: Algorithmic Information Theory. Cambridge University Press, Cambridge (1987)

    Book  Google Scholar 

  6. Goldreich, O.: Combinatorial property testing (a survey). In: Proc. DIMACS Workshop in Randomized Methods in Algorithm Design, pp. 45–59 (1997)

    Google Scholar 

  7. Jakoby, A., Schindelhauer, C.: The Non-Recursive Power of Erroneous Computation. In: Pandu Rangan, C., Raman, V., Sarukkai, S. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 394–406. Springer, Heidelberg (1999)

    Google Scholar 

  8. Köhler, S.: Zur Approximierbarkeit des Halteproblems in einer praktischen Gödelisierung, Bachelor’s Thesis, University of Paderborn (2004)

    Google Scholar 

  9. Li, M., Vitáni, P.: An Introduction to Kolmogorov Complexity and its Application, 2nd edn. Springer, Heidelberg (1997)

    Google Scholar 

  10. Lynch, N.: Approximations to the Halting Problem. J. Computer and System Sciences 9, 143–150 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  11. Machtey, M., Young, P.: An Introduction to the General Theory of Algorithms. The Computer Science Library (1978)

    Google Scholar 

  12. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1995)

    Google Scholar 

  13. Rogers Jr., H.: Theory of Recursive Functions and Effective Computability. Mc- Graw Hill, New York (1967)

    MATH  Google Scholar 

  14. Rose, G.F., Ullian, J.S.: Approximation of Functions on the Integers. Pacific Journal of Mathematics 13(2), 693–701 (1963)

    MATH  MathSciNet  Google Scholar 

  15. Schnorr, C.P.: Optimal Enumerations and Optimal Gödel Numberings. Mathematical Systems Theory 8(2), 182–191 (1975)

    Article  MathSciNet  Google Scholar 

  16. Smith, C.: A Recursive Introduction to the Theory of Computation. Springer, Heidelberg (1994)

    Book  Google Scholar 

  17. Soare, R.I.: Recursively Enumerable Sets and Degrees. Springer, Heidelberg (1987)

    Google Scholar 

  18. Specker, E.: Nicht konstruktiv beweisbare Sätze der Analysis. J. Symbolic Logic 14(3), 145–158 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wikipedia, the free encyclopedia (2005), http://wikipedia.org/wiki/BrainFuck

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Köhler, S., Schindelhauer, C., Ziegler, M. (2005). On Approximating Real-World Halting Problems. In: Liśkiewicz, M., Reischuk, R. (eds) Fundamentals of Computation Theory. FCT 2005. Lecture Notes in Computer Science, vol 3623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11537311_40

Download citation

  • DOI: https://doi.org/10.1007/11537311_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28193-1

  • Online ISBN: 978-3-540-31873-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics