Skip to main content

Learning Closed Sets of Labeled Graphs for Chemical Applications

  • Conference paper
Inductive Logic Programming (ILP 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3625))

Included in the following conference series:

Abstract

Similarity of graphs with labeled vertices and edges is naturally defined in terms of maximal common subgraphs. To avoid computation overload, a parameterized technique for approximation of graphs and their similarity is used. A lattice-based method of binarizing labeled graphs that respects the similarity operation on graph sets is proposed. This method allows one to compute graph similarity by means of algorithms for computing closed sets. Results of several computer experiments in predicting biological activity of chemical compounds that employ the proposed technique testify in favour of graph approximations as compared to complete graph representations: gaining in efficiency one (almost) does not lose in accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. King, R., Srinivasan, A., Dehaspe, L.: WARMR: A Data Mining tool for chemical data. J. of Computer-Aided Molecular Design 15, 173–181 (2001)

    Article  Google Scholar 

  2. Kramer, S.: Structural Regression Trees. In: Proc. 13th National Conference on Artificial Intelligence, AAAI 1996, pp. 812–819. AAAI Press/MIT Press, Cambridge/Menlo Park (1996)

    Google Scholar 

  3. Kuznetsov, S.: Learning of Simple Conceptual Graphs from Positive and Negative Examples. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 384–392. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  4. Borgelt, C., Berthold, M.: Mining Molecular Fragments: Finding Relevant Substructures of Molecules. In: Zhong, N., Yu, P. (eds.) Proc. 2nd IEEE International Conference on Data Mining, ICDM 2002, Piscataway, NJ, USA, pp. 51–58. IEEE Press, Los Alamitos (2002)

    Chapter  Google Scholar 

  5. Inokuchi, A., Washio, T., Motoda, H.: Complete Mining of Frequent Patterns from Graphs: Mining Graph Data. Machine Learning 50, 321–354 (2003)

    Article  MATH  Google Scholar 

  6. Washio, T., Motoda, H.: State of the art of graph-based data mining. SIGKDD Explorations Newsletter 5, 59–68 (2003)

    Article  Google Scholar 

  7. Yan, X., Han, J.: gSpan: Graph-Based Substructure Pattern Mining. In: Proc. IEEE Int. Conf. on Data Mining, ICDM 2002, pp. 721–724. IEEE Computer Society, Los Alamitos (2002)

    Google Scholar 

  8. Yan, X., Han, J.: CloseGraph: mining closed frequent graph patterns. In: Getoor, L., Senator, T., Domingos, P., Faloutsos, C. (eds.) Proc. of the 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, KDD 2003, pp. 286–295. ACM Press, New York (2003)

    Chapter  Google Scholar 

  9. Gonzalez, J., Holder, L., Cook, D.: Experimental Comparison of Graph-Based Relational Concept Learning with Inductive Logic Programming System. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 84–100. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Blinova, V., Dobrynin, D., Finn, V., Kuznetsov, S., Pankratova, E.: Toxicology analysis by means of the JSM-method. Bioinformatics 19, 1201–1207 (2003)

    Article  Google Scholar 

  11. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient Mining of Association Rules Using Closed Itemset Lattices. J. Inf. Systems 24, 25–46 (1999)

    Article  Google Scholar 

  12. Avidon, V., Pomerantsev, A.: Structure-Activity Relationship Oriented Languages for Chemical Structure Representation. J. Chem. Inf. Comput. Sci. 22, 207–214 (1982)

    Google Scholar 

  13. Helma, C., King, R., Kramer, S., Srinvasan, A. (eds.): Proc. of the Workshop on Predictive Toxicology Challegnge at the 5th Conference on Data Mining and Knowledge Discovery, PKDD 2001 (September 7, 2001), http://www.predictive-toxicology.org/ptc/

  14. Pfahringer, B.: (The Futility of) Trying to Predict Carcinogenicity of Chemical Compounds. In: Helma, C., King, R., Kramer, S., Srinvasan, A. (eds.) Proc. of the Workshop on Predictive Toxicology Challegnge at the 5th Conference on Data Mining and Knowledge Discovery, PKDD 2001 (2001), http://www.predictivetoxicology.org/ptc/

  15. Kuznetsov, S.: Similarity operation on hypergraphs as a basis of plausible inference. In: Proc. 1st Soviet Conference on Artificial Intelligence, pp. 442–448 (1988)

    Google Scholar 

  16. Kuznetsov, S.: JSM-method as a machine learning method. Itogi Nauki i Tekhniki, ser. Informatika 15, 17–50 (1991) (in Russian)

    Google Scholar 

  17. Kuznetsov, S., Obiedkov, S.: Comparing performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Intell. 14, 189–216 (2002)

    Article  MATH  Google Scholar 

  18. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin, Heidelberg (1999)

    MATH  Google Scholar 

  19. Ganter, B., Kuznetsov, S.: Pattern Structures and Their Projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Ganter, B., Grigoriev, P., Kuznetsov, S., Samokhin, M.: Concept-Based Data Mining with Scaled Labeled Graphs. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 94–108. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Mitchell, T.: Machine Learning. The McGraw-Hill Companies, New York (1997)

    MATH  Google Scholar 

  22. Finn, V.: Plausible Reasoning in Systems of JSM Type. Itogi Nauki i Tekhniki, Seriya Informatika 15, 54–101 (1991) (in Russian)

    Google Scholar 

  23. Yan, L.S.: Study of carcinogenic mechanism of polycyclic aromatic hydrocarbonsextended bay region theory and its quantitative model. Carcinogenesis 6, 1–6 (1985)

    Article  Google Scholar 

  24. Birkhoff, G.: Lattice Theory. Amer. Math. Soc., Providence (1979)

    MATH  Google Scholar 

  25. Grigoriev, P.A., Yevtushenko, S.A.: Elements of an Agile Discovery Environment. In: Grieser, G., Tanaka, Y., Yamamoto, A. (eds.) DS 2003. LNCS (LNAI), vol. 2843, pp. 309–316. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  26. Ganter, B., Kuznetsov, S.: Formalizing Hypotheses with Concepts. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 342–356. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  27. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools with Java Implementations. Morgan kaufmann, San Francisco (2000)

    Google Scholar 

  28. Cook, D., Holder, L.: Graph-Based Data Mining. IEEE Intelligent Systems 15, 32–41 (2000)

    Google Scholar 

  29. Cameron-Jones, R., Quinlan, J.: Efficient Top-down Induction of Logic Programs. SIGART Bulletin 5, 33–42 (1994)

    Article  Google Scholar 

  30. Muggleton, S.: Inverse Entailment and Progol. New Generation Computing 13, 245–286 (1995)

    Article  Google Scholar 

  31. Gonzalez, J., Holder, L., Cook, D.: Application of Graph-Based Concept Learning to the Predictive Toxicology Domain. In: Helma, C., King, R., Kramer, S., Srinvasan, A. (eds.) Proc. Workshop on Predictive Toxicology Challegnge at the 5th Conference on Data Mining and Knowledge Discovery, PKDD 2001 (2001), http://www.predictive-toxicology.org/ptc/

  32. Blinova, V.G., Dobrynin, D.A., Zholdakova, Z.I., Kharchevnikova, N.V.: Studies on the structure-activity relationships of alcohols by means of the JSM-method. Nauch. Tekh. Inf., ser. 2, 13–18 (2001) (in Russian)

    Google Scholar 

  33. Guilian, W., Naibin, B.: Structure-activity relationships for rat and mouse LD50 of miscellaneous alcohols. Chemosphere 35, 1475–1483 (1998)

    Article  Google Scholar 

  34. Woo, Y.T., Lai, D., McLain, J., et al.: Use of mechanism-based structure-activity relationships analysis in carcinogenic ranking for drinking water desinfection byproducts. Environ. Health Perspect, 75–87 (2002)

    Google Scholar 

  35. Kharchevnikova, N.V., Blinova, V.G., Dobrynin, D.A., Maksin, M.V., Zholdakova, Z.I.: Application of JSM-method and quantum-chemical computations for predicting of carcinogenic potential and chronic toxicity in halogen-substituted aliphatic hydrocarbons. Nauch. Tekh. Inf., ser. 2, 21–28 (2004) (in Russian)

    Google Scholar 

  36. Jerina, D., Lehr, R.: The bay-region theory: quantum mechanical approach to aromatic hydrocarbon-induced carcinogenecity. Microsomes and Drug Oxidation, pp. 709–720. Pergamon Press, Oxford (1977)

    Google Scholar 

  37. Dipple, A.: Polynuclear Aromatic Carcinogens. Number 172 in ACS Monograph. In: Chemical Carcinogens, pp. 245–314. Amer. Chem. Soc., Washington (1976)

    Google Scholar 

  38. Lowe, J., Silverman, B.: Mo theory of ease of formation of carbocations derived from nonalternant polycyclic aromatic hydrocarbons. J. Amer. Chem. Soc. 106, 5955–5958 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuznetsov, S.O., Samokhin, M.V. (2005). Learning Closed Sets of Labeled Graphs for Chemical Applications. In: Kramer, S., Pfahringer, B. (eds) Inductive Logic Programming. ILP 2005. Lecture Notes in Computer Science(), vol 3625. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11536314_12

Download citation

  • DOI: https://doi.org/10.1007/11536314_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28177-1

  • Online ISBN: 978-3-540-31851-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics