Skip to main content

A Parallel Computational Code for the Education of Coherent Structures of Turbulence in Fluid Dynamics

  • Conference paper
Book cover Parallel Computing Technologies (PaCT 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3606))

Included in the following conference series:

Abstract

A parallel computational code is developed for the execution of the Proper Orthogonal Decomposition (POD) of turbulent flow fields in fluid dynamics. The POD is an analytically-founded statistical technique that permits the eduction of appropriately-defined modes of the flow from the background flow, allowing the determination of the coherent structures of turbulence. The computational aspects of the different phases of the computing procedure are analyzed and the development of the related parallel computational code is described. Computational tests corresponding to different computing domains and number of processors are executed on a HP-V2500 parallel computing system and the results are shown in terms of parallel performance of the different phases of the calculations separately considered and of the computational code in the whole.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfonsi, G., Passoni, G., Pancaldo, L., Zampaglione, D.: A spectral-finite difference solution of the Navier-Stokes equations in three dimensions. Int. J. Num. Meth. Fluids. 28, 129 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Passoni, G., Alfonsi, G., Galbiati, M.: Analysis of hybrid algorithms for the Navier-Stokes equations with respect to hydrodynamic stability theory. Int. J. Num. Meth. Fluids. 38, 1069 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Speziale, C.G.: Analytical methods for the development of Reynolds-stress closures in turbulence. Ann. Rev. Fluid Mech. 23, 107 (1991)

    Article  MathSciNet  Google Scholar 

  4. Lesieur, M., Métais, O.: New trends in Large-Eddy simulation of turbulence. Ann. Rev. Fluid Mech. 28, 45 (1996)

    Article  Google Scholar 

  5. Moin, P., Mahesh, K.: Direct Numerical Simulation: a tool in turbulence research. Ann. Rev. Fluid Mech. 30, 539 (1998)

    Article  MathSciNet  Google Scholar 

  6. Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91, 99 (1963)

    Article  Google Scholar 

  7. Bardina, J., Ferziger, J.H., Reynolds, W.C.: Improved subgrid models for large-eddy simulation. AIAA Pap., pp. 80–1357 (1980)

    Google Scholar 

  8. Kraichnan, R.H.: Eddy viscosity in two and three dimensions. J. Atmos. Sci. 33, 1521 (1976)

    Article  Google Scholar 

  9. Métais, O., Lesieur, M.: Statistical predictability of decaying turbulence. J. Atmos. Sci. 43, 857 (1986)

    Article  Google Scholar 

  10. Yakhot, A., Orszag, S.A., Yakhot, V., Israeli, M.: Renormalization group formulation of large-eddy simulation. J. Sci. Comput. 4, 139 (1989)

    Article  MathSciNet  Google Scholar 

  11. Germano, M.: Turbulence, the filtering approach. J. Fluid Mech. 238, 325 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Spalart, P.R.: Direct simulation of a turbulent boundary layer up to Req »1410. J. Fluid Mech. 187, 61 (1988)

    Article  MATH  Google Scholar 

  13. Passoni, G., Alfonsi, G., Tula, G., Cardu, U.: A wavenumber parallel computational code for the numerical integration of the Navier-Stokes equations. Parall. Comput. 25, 593 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Passoni, G., Cremonesi, P., Alfonsi, G.: Analysis and implementation of a parallelization strategy on a Navier-Stokes solver for shear flow simulations. Parall. Comput. 27, 1665 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fischer, P.F., Patera, A.T.: Parallel simulation of viscous incompressible flows. Ann. Rev. Fluid Mech. 26, 483 (1994)

    Article  MathSciNet  Google Scholar 

  16. Cantwell, B.J.: Organized motion in turbulent flow. Ann. Rev. Fluid Mech. 13, 457 (1981)

    Article  Google Scholar 

  17. Robinson, S.K.: Coherent motions in the turbulent boundary layer. Ann. Rev. Fluid Mech. 23, 601 (1991)

    Article  Google Scholar 

  18. Lumley, J.L.: Stochastic tools in turbulence. Academic Press, London (1971)

    Google Scholar 

  19. Kosambi, D.D.: Statistics in function space. J. Indian Math. Soc. 7, 76 (1943)

    MATH  MathSciNet  Google Scholar 

  20. Loéve, M.: Functions aleatoire de second ordre. C. R. Acad. Sci. Paris. 220 (1945)

    Google Scholar 

  21. Karhunen, K.: Zur spectral theorie stochastischer prozesse. Ann. Acad. Sci. Fenicae. A1, 34 (1946)

    Google Scholar 

  22. Pougachev, V.S.: General theory of the correlations of random functions. Izv. Akad. Nauk. SSSR, Ser. Math. 17, 1401 (1953)

    Google Scholar 

  23. Obukhov, A.M.: Statistical description of continuous fields. Trans. Geophys. Int. Akad. Nauk. SSSR 24, 3 (1954)

    Google Scholar 

  24. Sirovich, L.: Turbulence and the dynamics of coherent structures. Parts I-III. Quart. Appl. Math. 45, 561 (1987)

    MATH  MathSciNet  Google Scholar 

  25. Berkooz, G., Holmes, P., Lumley, J.L.: The Proper Orthogonal Decomposition in the analysis of turbulent flows. Ann. Rev. Fluid Mech. 25, 539 (1993)

    Article  MathSciNet  Google Scholar 

  26. Bakewell, P., Lumley, J.L.: Viscous sublayer and adjacent wall region in turbulent pipe flows. Phys. Fluids. 10, 1880 (1967)

    Article  Google Scholar 

  27. Aubry, N., Holmes, P., Lumley, J.L., Stone, E.: The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  28. Moin, P., Moser, R.D.: Characteristic-eddy decomposition of turbulence in a channel. J. Fluid Mech. 200, 471 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  29. Sirovich, L., Ball, K.S., Keefe, L.R.: Plane waves and structures in turbulent channel flow. Phys. Fluids. A2, 2217 (1990)

    Google Scholar 

  30. Ball, K.S., Sirovich, L., Keefe, L.R.: Dynamical eigenfunction decomposition of turbulent channel flow. Int. J. Num. Meth. Fluids. 12, 585 (1991)

    Article  MATH  Google Scholar 

  31. Webber, G.A., Handler, R.A., Sirovich, L.: The Karhunen-Loéve decomposition of minimal channel flow. Phys. Fluids. 9, 1054 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  32. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in Fortran 77. Cambridge University Press, Cambridge (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alfonsi, G., Primavera, L. (2005). A Parallel Computational Code for the Education of Coherent Structures of Turbulence in Fluid Dynamics. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2005. Lecture Notes in Computer Science, vol 3606. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11535294_33

Download citation

  • DOI: https://doi.org/10.1007/11535294_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28126-9

  • Online ISBN: 978-3-540-31826-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics