Skip to main content

Geometric Network Design with Selfish Agents

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3595))

Abstract

We study a geometric version of a simple non-cooperative network creation game introduced in [2], assuming Euclidean edge costs on the plane. The price of anarchy in such geometric games with k players is Θ(k). Hence, we consider the task of minimizing players incentives to deviate from a payment scheme, purchasing the minimum cost network. In contrast to general games, in small geometric games (2 players and 2 terminals per player), a Nash equilibrium purchasing the optimum network exists. This can be translated into a (1+ε)-approximate Nash equilibrium purchasing the optimum network under more practical assumptions, for any ε > 0. For more players there are games with 2 terminals per player, such that any Nash equilibrium purchasing the optimum solution is at least \(\left(\frac{4}{3}-\epsilon\right)\)-approximate. On the algorithmic side, we show that playing small games with best-response strategies yields low-cost Nash equilibria. The distinguishing feature of our paper are new techniques to deal with the geometric setting, fundamentally different from the techniques used in [2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anshelevich, E., Dasgupta, A., Kleinberg, J., Tardos, É., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 295–304 (2004)

    Google Scholar 

  2. Anshelevich, E., Dasgupta, A., Tardos, É., Wexler, T.: Near-optimal network design with selfish agents. In: Proceedings of the 35th Annual Symposium on Theory of Computing (STOC), pp. 511–520 (2003)

    Google Scholar 

  3. Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. Journal of the ACM 45(5), 753–782 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bala, V., Goyal, S.: A non-cooperative model of network formation. Econometrica 68, 1181–1229 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chlebík, M., Chlebíková, J.: Approximation hardness of the Steiner tree problem in graphs. In: Penttonen, M., Schmidt, E.M. (eds.) SWAT 2002. LNCS, vol. 2368, pp. 170–179. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Czumaj, A., Krysta, P., Vöcking, B.: Selfish traffic allocation for server farms. In: Proceedings of the 34th Annual ACM Symposium on the Theory of Computing (STOC), pp. 287–296 (2002)

    Google Scholar 

  7. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry - Algorithms and Applications. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  8. Dutta, D., Goel, A., Heidemann, J.: Oblivious AQMand Nash equilibrium. In: Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM (2003)

    Google Scholar 

  9. Fabrikant, A., Luthera, A., Maneva, E., Papadimitriou, C., Shenker, S.: On a network creation game. In: Proceedings of the 22nd Annual ACMSymposium on Principles of Distributed Computing (PODC), pp. 347–351 (2003)

    Google Scholar 

  10. Gilbert, E., Pollak, H.: Steiner Minimal Trees. SIAM Journal on Applied Mathematics 16, 1–29 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goemams, M., Williamson, D.: A general approximation technique for constrained forest problems. SIAM Journal on Computing 24(2), 296–317 (1995)

    Article  MathSciNet  Google Scholar 

  12. Heller, H., Sarangi, S.: Nash networks with heterogeneous agents. Technical ReportWorking Paper Series, E-2001-1, Virginia Tech (2001)

    Google Scholar 

  13. Koutsoupias, E., Papadimitriou, C.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Melzak, Z.: On the problem of Steiner. Canadian Mathematical Bulletin 4, 143–148 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  15. Robins, G., Zelikovsky, A.: Improved Steiner tree approximation in graphs. In: Proceedings of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 770–779 (2000)

    Google Scholar 

  16. Roughgarden, T., Tardos, É.: How bad is selfish routing? Journal of the ACM 49(2), 236–259 (2002)

    Article  MathSciNet  Google Scholar 

  17. Schulz, A., Stier Moses, N.: Selfish routing in capacitated networks. Mathematics of Operations Research 29(4), 961–976 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoefer, M., Krysta, P. (2005). Geometric Network Design with Selfish Agents. In: Wang, L. (eds) Computing and Combinatorics. COCOON 2005. Lecture Notes in Computer Science, vol 3595. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11533719_19

Download citation

  • DOI: https://doi.org/10.1007/11533719_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28061-3

  • Online ISBN: 978-3-540-31806-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics