Skip to main content

A Combination Method for Generating Interpolants

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3632))

Abstract

We present a combination method for generating interpolants for a class of first-order theories. Using interpolant-generation procedures for individual theories as black-boxes, our method modularly generates interpolants for the combined theory. Our combination method applies for a broad class of first-order theories, which we characterize as equality-interpolating Nelson-Oppen theories. This class includes many useful theories such as the quantifier-free theories of uninterpreted functions, linear inequalities over reals, and Lisp structures. The combination method can be implemented within existing Nelson-Oppen-style decision procedures (such as Simplify, Verifun, ICS, CVC-Lite, and Zap).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrett, C., Berezin, S.: CVC lite: A new implementation of the cooperating validity checker category B. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 515–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Craig, W.: Linear reasoning. a new form of the herbrand-gentzen theorem. J. Symbolic Logic 22, 250–268 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  3. Detlefs, D., Nelson, G., Saxe, J.: Simplify theorem prover, http://research.compaq.com/SRC/esc/Simplify.html

  4. Filliâtre, J.-C., Owre, S., Rueß, H., Shankar, N.: ICS: Integrated canonizer and solver. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 246–249. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Flanagan, C., Joshi, R., Ou, X., Saxe, J.B.: Theorem proving using lazy proof explication. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 355–367. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Gallier, J.H.: Logic for Computer Science: Foundations of Automatic Theorem Proving. John Wiley & Sons, New York (1987)

    Google Scholar 

  7. Ganesh, V., Berezin, S., Tinelli, C., Dill, D.L.: Combination results for many-sorted theories with overlapping signatures. Technical report, Department of Computer Science, Stanford University (2004)

    Google Scholar 

  8. Gerhardy, P.: Refined complexity analysis of cut elimination. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 212–225. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Takeuti, G.: Studies in Logic, vol. 81. Elsevier/North Holland, Amsterdam (1975)

    Google Scholar 

  10. Gulwani, S., Tiwari, A.: Unpublished manuscript

    Google Scholar 

  11. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from proofs. In: POPL, pp. 232–244 (2004)

    Google Scholar 

  12. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. McMillan, K.L.: An interpolating theorem prover. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 16–30. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Transactions on Programming Languages and Systems 1(2), 245–257 (1979)

    Article  MATH  Google Scholar 

  15. Nelson, G., Oppen, D.C.: Fast decision procedures based on congruence closure. J. ACM 27(2), 356–364 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  16. Oppen, D.C.: Complexity, convexity and combinations of theories. Theoretical Computer Science 12, 291–302 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  17. Pudlák, P.: Lower bounds for resolution and cutting planes proofs and monotone computations. J. of Symbolic Logic 62(3), 981–998 (1995)

    Article  Google Scholar 

  18. Kleene, S.C.: Mathematical Logic. Wiley Interscience, New York (1967)

    MATH  Google Scholar 

  19. Yorsh, G., Musuvathi, M.: A combination method for generating interpolants. Technical Report MSR-TR-2004-108, Microsoft Research (October 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yorsh, G., Musuvathi, M. (2005). A Combination Method for Generating Interpolants. In: Nieuwenhuis, R. (eds) Automated Deduction – CADE-20. CADE 2005. Lecture Notes in Computer Science(), vol 3632. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11532231_26

Download citation

  • DOI: https://doi.org/10.1007/11532231_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28005-7

  • Online ISBN: 978-3-540-31864-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics