Advertisement

Limits and Power Laws of Models for the Web Graph and Other Networked Information Spaces

  • Anthony Bonato
  • Jeannette Janssen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3405)

Abstract

We consider a new model of the web graph and related networks. The model is motivated by the copying models of the web graph, where new nodes copy the link structure of existing nodes, and a certain number of additional random links are introduced. Our model parametrizes the number of random links, thereby allowing for the analysis of threshold behaviour. We consider infinite limits of graphs generated by our model, and compare properties of these limits with orientations of the infinite random graph. We analyze the power law behaviour of the in-degree distribution of graphs generated by our model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adler, M., Mitzenmacher, M.: Towards compressing web graphs. In: Poceedings of the IEEE Data Compression Conference, DCC (2001)Google Scholar
  2. 2.
    Aiello, W., Chung, F., Lu, L.: Random evolution in massive graphs. In: Abello, J., et al. (eds.) Handbook on Massive Data Sets, pp. 97–122. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  3. 3.
    Albert, R., Barabási, A.: Emergence of scaling in random networks. Science 286, 509–512 (1999)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bollobás, B., Riordan, O., Spencer, J., Tusnády, G.: The degree sequence of a scale-free random graph process. Random Structures Algorithms 18, 279–290 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bonato, A., Janssen, J.: Infinite limits of copying models of the web graph. Internet Mathematics 1, 193–213 (2003)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cameron, P.J.: The random graph. In: Graham, R.L., Nešetřil, J. (eds.) Algorithms and Combinatorics, vol. 14, pp. 333–351. Springer, New York (1997)Google Scholar
  7. 7.
    Cameron, P.J.: The random graph revisited. In: European Congress of Mathematics, Barcelona, vol. I, pp. 267–274 (2000); Progr. Math., vol. 201. Birkhäuser, Basel (2001)Google Scholar
  8. 8.
    Diestel, R., Leader, I., Scott, A., Thomassé, S.: Partitions and orientations of the Rado graph (submitted)Google Scholar
  9. 9.
    Erdős, P., Rényi, A.: Asymmetric graphs. Acta Math. Acad. Sci. Hungar. 14, 295–315 (1963)CrossRefMathSciNetGoogle Scholar
  10. 10.
    An, Y., Janssen, J., Milios, E.: Characterizing the citation graph of computer science literature. Accepted in Knowledge and Inf. Systems (KAIS)Google Scholar
  11. 11.
    Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: Stochastic models for the web graph. In: Proceedings of the 41th IEEE Symp. on Foundations of Computer Science (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Anthony Bonato
    • 1
  • Jeannette Janssen
    • 2
  1. 1.Department of MathematicsWilfrid Laurier UniversityWaterlooCanada
  2. 2.Department of Mathematics and StatisticsDalhousie UniversityHalifaxCanada

Personalised recommendations