Advertisement

Traceroute-Like Exploration of Unknown Networks: A Statistical Analysis

  • Luca Dall’Asta
  • Ignacio Alvarez-Hamelin
  • Alain Barrat
  • Alexei Vázquez
  • Alessandro Vespignani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3405)

Abstract

Mapping the Internet generally consists in sampling the network from a limited set of sources by using traceroute-like probes. This methodology has been argued to introduce uncontrolled sampling biases that might produce statistical properties of the sampled graph which sharply differ from the original ones. Here we explore these biases and provide a statistical analysis of their origin. We derive a mean-field analytical approximation for the probability of edge and vertex detection that allows us to relate the global topological properties of the underlying network with the statistical accuracy of the sampled graph. In particular we show that shortest path routed sampling allows a clear characterization of underlying graphs with scale-free topology. We complement the analytical discussion with a throughout numerical investigation of simulated mapping strategies in different network models.

Keywords

Short Path Degree Distribution Average Degree Betweenness Centrality Discovery Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The National Laboratory for Applied Network Research (NLANR), sponsored by the National Science Foundation, http://moat.nlanr.net/
  2. 2.
    The Cooperative Association for Internet Data Analysis (CAIDA), located at the San Diego Supercomputer Center, http://www.caida.org/home/
  3. 3.
    Topology project, Electric Engineering and Computer Science Department, University of Michigan, http://topology.eecs.umich.edu/
  4. 4.
    SCAN project, Information Sciences Institute, http://www.isi.edu/div7/scan/
  5. 5.
    Internet mapping project at Lucent Bell Labs, http://www.cs.bell-labs.com/who/ches/map/
  6. 6.
    Faloutsos, M., Faloutsos, P., Faloutsos, C.: On Power-law Relationships of the Internet Topology. ACM SIGCOMM 1999, Comput. Commun. Rev. 29, 251–262 (1999)CrossRefGoogle Scholar
  7. 7.
    Govindan, R., Tangmunarunkit, H.: Heuristics for Internet Map Discovery. In: Proc. of IEEE Infocom 2000, vol. 3, pp. 1371–1380 (2000)Google Scholar
  8. 8.
    Broido, A., Claffy, K.C.: Internet topology: connectivity of IP graphs. In: San Diego Proceedings of SPIE International symposium on Convergence of IT and Communication, Denver, CO (2001)Google Scholar
  9. 9.
    Caldarelli, G., Marchetti, R., Pietronero, L.: The Fractal Properties of Internet. Europhys. Lett. 52, 386 (2000)CrossRefGoogle Scholar
  10. 10.
    Pastor-Satorras, R., Vázquez, A., Vespignani, A.: Dynamical and Correlation Properties of the Internet. Phys. Rev. Lett. 87, 258701 (2001); Vázquez, A., Pastor-Satorras, R., Vespignani, A.: Large-scale topological and dynamical properties of the Internet. Phys. Rev. E 65, 066130 (2002)CrossRefGoogle Scholar
  11. 11.
    Chen, Q., Chang, H., Govindan, R., Jamin, S., Shenker, S.J., Willinger, W.: The Origin of Power Laws in Internet Topologies Revisited. In: Proceedings of IEEE Infocom 2002, New York, USA (2002)Google Scholar
  12. 12.
    Medina, A., Matta, I.: BRITE: a flexible generator of Internet topologies. Tech. Rep. BU-CS-TR-2000-005, Boston University (2000)Google Scholar
  13. 13.
    Jin, C., Chen, Q., Jamin, S.: INET: Internet topology generators, Tech. Rep. CSE-TR-433-00, EECS Dept., University of Michigan (2000)Google Scholar
  14. 14.
    Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks: From biological nets to the Internet and WWW. Oxford University Press, Oxford (2003)zbMATHGoogle Scholar
  15. 15.
    Baldi, P., Frasconi, P., Smyth, P.: Modeling the Internet and the Web: Probabilistic methods and algorithms. Wiley, Chichester (2003)Google Scholar
  16. 16.
    Pastor-Satorras, R., Vespignani, A.: Evolution and structure of the Internet: A statistical physics approach. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  17. 17.
    Burch, H., Cheswick, B.: Mapping the internet. IEEE computer 32(4), 97–98 (1999)Google Scholar
  18. 18.
    Willinger, W., Govindan, R., Jamin, S., Paxson, V., Shenker, S.: Scaling phenomena in the Internet: Critically examining criticality. Proc. Natl. Acad. Sci. USA 99, 2573–2580 (2002)CrossRefGoogle Scholar
  19. 19.
    Lakhina, A., Byers, J.W., Crovella, M., Xie, P.: Sampling Biases in IP Topology Measurements. Technical Report BUCS-TR-2002-021, Department of Computer Sciences, Boston University (2002)Google Scholar
  20. 20.
    Clauset, A., Moore, C.: Traceroute sampling makes random graphs appear to have power law degree distributions (2003), arXiv:cond-mat/0312674Google Scholar
  21. 21.
    Petermann, T., De Los Rios, P.: Exploration of scale-free networks - Do we measure the real exponents? Eur. Phys. J. B 38, 201 (2004)CrossRefGoogle Scholar
  22. 22.
    Freeman, L.C.: A Set of Measures of Centrality Based on Betweenness. Sociometry 40, 35–41 (1977)CrossRefGoogle Scholar
  23. 23.
    Brandes, U.: A Faster Algorithm for Betweenness Centrality. J. Math. Soc. 25(2), 163–177 (2001)zbMATHCrossRefGoogle Scholar
  24. 24.
    Goh, K.-I., Kahng, B., Kim, D.: Universal Behavior of Load Distribution in Scale-Free Networks. Phys. Rev. Lett. 87, 278701 (2001)CrossRefGoogle Scholar
  25. 25.
    Erdös, P., Rényi, P.: On random graphs I. Publ. Math. Inst. Hung. Acad. Sci. 5, 17 (1960)zbMATHGoogle Scholar
  26. 26.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  27. 27.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Size-dependent degree distribution of a scale-free growing network. Phys. Rev. E 63, 062101 (2001)CrossRefGoogle Scholar
  29. 29.
    Barthélemy, M.: Betweenness Centrality in Large Complex Networks. Eur. Phys. J B 38, 163 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Luca Dall’Asta
    • 1
  • Ignacio Alvarez-Hamelin
    • 1
  • Alain Barrat
    • 1
  • Alexei Vázquez
    • 2
  • Alessandro Vespignani
    • 1
  1. 1.Laboratoire de Physique Théorique LPT (UMR du CNRS 8627)Université Paris SudOrsayFrance
  2. 2.Department of PhysicsUniversity of Notre DameNotre DameUSA

Personalised recommendations