Advertisement

Efficient Iris-Region Normalization for a Video Surveillance System

  • Jin Ok Kim
  • Bong Jo Joung
  • Chin Hyun Chung
  • Jun Hwang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3597)

Abstract

An efficient approach for iris recognition is presented in this paper. An efficient iris region normalization consists of a doubly polar coordinate and noise region exclude. And then a Haar wavelet transform is used to extract features from iris region of normalized. From this evaluation, we obtain iris code of small size and very high recognition rate. This effort is intended to enable a human authentication in small embedded systems, such as an integrated circuit card.

Keywords

Iris Region Haar Wavelet Equal Error Rate False Reject Rate High Recognition Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Daugman, J.G.: High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Analysis and Machine Intelligence 15(11), 1148–1161 (1993)CrossRefGoogle Scholar
  2. 2.
    Daugman, J.G.: Recognizing persons by their iris patterns. Cambridge University, Cambridge (1997)Google Scholar
  3. 3.
    Wildes, R.P.: Iris recognition: An emerging biometric technology. Proceedings of the IEEE 85(9), 1348–1363 (1997)CrossRefGoogle Scholar
  4. 4.
    Boles, W.W., Boashash, B.: A human identification technique using images of the iris and wavelet transform. IEEE Trans. on Signal Processing 46(4), 1185–1188 (1998)CrossRefGoogle Scholar
  5. 5.
    Randy, K.: Wavelet and signal processing. Kluwer Academic Publisher, Dordrecht (1992)Google Scholar
  6. 6.
    Rioul, O., Vetterli, M.: Wavelet and signal processing. IEEE Signal Processing Magazine, 14–38 (October 1981)Google Scholar
  7. 7.
    Strang, G., Nguyen, T.: Wavelet and filter banks. Wesley-Cambridge Press (1996)Google Scholar
  8. 8.
    Gonzalez, R.C., Woods, R.E.: Digital image processing, 2nd edn. Addison-Wesley, Reading (2002)Google Scholar
  9. 9.
    Lim, S., Lee, K., Byeon, O., Kim, T.: Efficient iris recognition through improvement of feature vector and classifier. ETRI Journal 23(2) (June 2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jin Ok Kim
    • 1
  • Bong Jo Joung
    • 2
  • Chin Hyun Chung
    • 2
  • Jun Hwang
    • 3
  1. 1.Faculty of MultimediaDaegu Haany UniversityGyeongsangbuk-doKorea
  2. 2.Department of Information and Control EngineeringKwangwoon UniversitySeoulKorea
  3. 3.Division of Information and Communication Eng.Seoul Women’s UniversitySeoulKorea

Personalised recommendations