Advertisement

Multi-modal Techniques for Identity Theft Prevention

  • Taekyoung Kwon
  • Hyeonjoon Moon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3597)

Abstract

The rapid growth of the Internet has caused a large number of social problems including invasion of privacy and violation of personal identity. Currently, it is an emerging trend to verify personal identity based on hybrid methods (for example, by combining the existing off-line and on-line verification methods) using the Internet in the legacy applications. As a result, many security problems of the Internet is now becoming the practical impacts on our social applications. In this paper, we study multi-modal techniques for preventing identity theft in the social applications from the practical perspectives. A digital signature techniques and multi-modal biometrics are exploited in our scheme without requiring users to hold additional hardware devices.

Keywords

Face Recognition Face Image Gabor Wavelet Social Application Identity Theft 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Belhumueur, P., Hespanha, J., Krieman, D.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 711–720 (1997)Google Scholar
  2. 2.
    Daon Inc., Biometric Authentication & Digital Signatures for the Pharmaceutical Industry, White paper available at http://www.daon.com/downloads/publications/esignature.pdf
  3. 3.
    Guillou, L., Quisquater, J.: A practical zero-knowledge protocol fitted to security microprocessor minimizing both transmission and memory. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg (1988)Google Scholar
  4. 4.
    Kwon, T.: Practical digital signature generation using biometrics. In: Laganá, A., Gavrilova, M.L., Kumar, V., Mun, Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3043, pp. 728–737. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Kwon, T., Moon, H.: Multi-modal biometrics with PKI technologies for border control applications. In: Kantor, P., Muresan, G., Roberts, F., Zeng, D.D., Wang, F.-Y., Chen, H., Merkle, R.C. (eds.) ISI 2005. LNCS, vol. 3495, pp. 99–114. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Liu, C., Wechsler, H.: Gabor Feature Based Classification Using the Enhanced Fisher Linear Discriminant Model for Face Recognition. IEEE Transactions on Image Processing, 467–476 (2002)Google Scholar
  7. 7.
    Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography, pp. 287–291, 312–315. CRC Press, Boca Raton (1997)Google Scholar
  8. 8.
    Messer, K., Matas, J., Kittler, J., Luettin, J., Maitre, G.: XM2VTSDB: The Extended M2VTS Database. In: Proc. of International Conference on Audio- and Video-Based Person Authentication, pp. 72–77 (1999)Google Scholar
  9. 9.
    Palmer, R.: The Bar Code Book, 3rd edn. Helmers Publishing, Peterborough (1995)Google Scholar
  10. 10.
    Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM 21, 120–126 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Phillips, P., Moon, H., Rizvi, S., Rauss, P.: The FERET Evaluation Methodology for Face-Recognition Algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1090–1104 (2000)Google Scholar
  12. 12.
    Soutar, C., Roberge, D., Stoianov, A., Golroy, R., Vijaya Kumar, B.: Biometric Encryption. ICSA Guide to Cryptography. McGraw-Hill, New York (1999), also available at http://www.bioscrypt.com/assets/Biometric_Encryption.pdf
  13. 13.
    Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)CrossRefGoogle Scholar
  14. 14.
    Yang, J., Zhang, D., Frangi, A., Yang, J.: Two-Dimensional PCA: A New Approach to Appearance-Based Face Representation and Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 131–137 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Taekyoung Kwon
    • 1
  • Hyeonjoon Moon
    • 1
  1. 1.Sejong UniversitySeoulKorea

Personalised recommendations