Advertisement

Visual Media Retrieval Framework Using Web Service

  • Yunmook Nah
  • Bogju Lee
  • Jungsun Kim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3597)

Abstract

The need for content-based image retrieval from image databases is ever increasing rapidly in many applications, such as electronic art museums, internet shopping malls, internet search engines, and medical information systems. Many such image resources have been previously developed and widely spread over the internet. In this paper, we propose a Web Service-driven architecture, named the HERMES(tHE Retrieval framework for visual MEdia Service), to support effective retrieval on large volumes of visual media resources. We explain how semantic metadata and ontology can be utilized to realize more intelligent content-based retrieval on visual media data.

Keywords

Visual Medium Service Ontology Service Registration Description Metadata Metadata Schema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Flickner, M., et al.: Query by Image and Video Content: The QBIC System. Computer, 23–32 (September 1995)Google Scholar
  2. 2.
    Ogle, V.E., Stonebraker, M.: Chabot: Retrieval from a Relational Database of Images. Computer, 40–48 (September 1995)Google Scholar
  3. 3.
    Wang, J.Z., Li, J., Wiederhold, G.: SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture Libraries. Transactions on Knowledge and Data Engineering 23(9) (2001)Google Scholar
  4. 4.
    Chu, W.W., Leong, I.T., Taira, R.K.: A Semantic Modeling Approach for Image Retrieval by Content. VLDB J. 3, 445–477 (1994)CrossRefGoogle Scholar
  5. 5.
    Chu, W.W., Hsu, C.-C., Cardenas, A.F., Taira, R.K.: Knowledge-Based Image Retrieval with Spatial and Temporal Constructs. Transactions on Knowledge and Data Engineering 10(6), 872–888 (1998)CrossRefGoogle Scholar
  6. 6.
    Nah, Y., Sheu, P.C.-y.: Image Content Modeling for Neuroscience Databases. In: Proc. Int’l Conf. on Software Eng. And Knowledge Eng (SEKE), pp. 91–98. ACM Press, New York (2002)CrossRefGoogle Scholar
  7. 7.
    Lee, B., Nah, Y.: A Color Ratio based Image Retrieval for e-Catalog Image Databases. In: Proceedings of SPIE: Internet Multimedia Management Systems II. SPIE, vol. 4519, August 2001, pp. 97–105 (2001)Google Scholar
  8. 8.
    Hong, S., Lee, C., Nah, Y.: An Intelligent Web Image Retrieval System. In: Proceedings of SPIE: Internet Multimedia Management Systems II. SPIE, vol. 4519, August 2001, pp. 106–115 (2001)Google Scholar
  9. 9.
    Chung, J.-Y., Lin, K.-J., Mathieu, R.G.: Web Services Computing: Advancing Software Interoperability. Computer 36(10), 35–37 (2003)CrossRefGoogle Scholar
  10. 10.
    Thompson, T., Weil, R., Wood, M.D.: CPXe: Web Services for Internet Imaging. Computer 36(10), 54–62 (2003)CrossRefGoogle Scholar
  11. 11.
    Tsai, T.M., Yu, H.-K., et al.: Ontology-Mediated Integration of Intranet Web Services. Computer 36(10), 63–71 (2003)CrossRefGoogle Scholar
  12. 12.
    Nah, Y., Sheu, P.C.-y.: Searching Image Databases by Content. In: Proc. KSEA-SC Symposium, CSU, Fullerton (March 2002)Google Scholar
  13. 13.
    Dublin Core Organization: Dublin Core Metadata Initiative, http://dublincore.org/index.shtml/
  14. 14.
    Visual Resources Association Data Standards Committee: VRA Core Categories Ver. 3.0, http://www.vraweb.org/vracore3.htm
  15. 15.
    ISO IEC JTC1/SC29/WG11: Overview of the MPEG-7 Standard. MPEG2001/N4031, Singapore (March 2001)Google Scholar
  16. 16.
    Hong, S., Nah, Y.: A Design and Implementation of Intelligent Color Image Retrieval System based on Emotion Information. In: Proc. Korean Database Conference, May 2004, pp. 243–250 (2004)Google Scholar
  17. 17.
    Eakins, J.P., Graham, M.E.: Content-based Image Retrieval A report to the JISC Technology Applications Programme (January 1999), http://www.unn.ac.uk/iidr/research/cbir/report.html
  18. 18.
    Lew, M.S.: Next Generation Web Searches for Visual Content. Computer, 46–53 (November 2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Yunmook Nah
    • 1
  • Bogju Lee
    • 1
  • Jungsun Kim
    • 2
  1. 1.School of Electrical, Electronics, and Computer EngineeringDankook UniversitySeoulKorea
  2. 2.School of Electrical Engineering and Computer ScienceHanyang UniversityKyungki-doKorea

Personalised recommendations