Skip to main content

E-CIDIM: Ensemble of CIDIM Classifiers

  • Conference paper
  • 2333 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3584))

Abstract

An active research area in Machine Learning is the construction of multiple classifier systems to increase learning accuracy of simple classifiers. In this paper we present E-CIDIM, a multiple classifier system designed to improve the performance of CIDIM, an algorithm that induces small and accurate decision trees. E-CIDIM keeps a maximum number of trees and it induces new trees that may substitute the old trees in the ensemble. The substitution process finishes when none of the new trees improves the accuracy of any of the trees in the ensemble after a pre-configured number of attempts. In this way, the accuracy obtained thanks to an unique instance of CIDIM can be improved. In reference to the accuracy of the generated ensembles, E-CIDIM competes well against bagging and boosting at statistically significance confidence levels and it usually outperforms them in the accuracy and the average size of the trees in the ensemble.

This work has been partially supported by the MOISES project, number TIC2002-04019-C03-02, of the MCyT, Spain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  2. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proc. of 13th International Conference on Machine Learning, pp. 146–148 (1996)

    Google Scholar 

  3. Wolpert, D.: Stacked generalization. Neural Networks 5, 241–260 (1992)

    Article  Google Scholar 

  4. Gama, J., Brazdil, P.: Cascade generalization. Machine Learning 41, 315–343 (2000)

    Article  MATH  Google Scholar 

  5. Ferri, C., Flach, P., Hernández-Orallo, J.: Delegating classifiers. In: Proceedings of the 21st International Conference on Machine Learning. Omnipress (2004)

    Google Scholar 

  6. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth (1984)

    Google Scholar 

  7. Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)

    Google Scholar 

  8. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  9. Utgoff, P.E., Berkman, N.C., Clouse, J.A.: Decision tree induction based on efficient tree restructuring. Machine Learning 29, 5–44 (1997)

    Article  MATH  Google Scholar 

  10. Ramos-Jiménez, G., Morales-Bueno, R., Villalba-Soria, A.: CIDIM. Control of induction by sample division methods. In: Proceedings of the International Conference on Artificial Intelligence (IC-AI 2000), Las Vegas, pp. 1083–1087 (2000)

    Google Scholar 

  11. Ruiz-Gómez, J., Ramos-Jiménez, G., Villalba-Soria, A.: Modelling based on rule induction learning. In: Computers and Computacional Engineering in Control, pp. 158–163. World Scientific and Engineering Society Press, Greece (1999)

    Google Scholar 

  12. Jerez-Aragonés, J.M., Gómez-Ruiz, J.A., Ramos-Jiménez, G., Muñoz-Pérez, J., Alba-Conejo, E.: A combined neural network and decision trees model for prognosis of breast cancer relapse. Artificial Intelligence in Medicine 27, 45–63 (2003)

    Article  Google Scholar 

  13. Schapire, R.E.: The strength of weak learnability. Machine Learning 5, 197–227 (1990)

    Google Scholar 

  14. Freund, Y.: Boosting a weak learning algorithm by majority. Information and Computation 121, 256–285 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Freund, Y., Schapire, R.E.: The strength of weak learnability. Journal of Computer and System Sciences 55, 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Aslam, J.A., Decatur, S.E.: General bounds on statistical query learning and PAC learning with noise via hypothesis boosting. Information and Computation 141, 85–118 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: Bagging, boosting and variants. Machine Learning 36, 105–139 (1999)

    Article  Google Scholar 

  18. Kearns, M.J., Vazirani, U.V.: On the boosting ability of top-down decision tree learning algorithms. Journal of Computer and System Sciences 58, 109–128 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Blake, C., Merz, C.J.: UCI repository of machine learning databases, University of California, Department of Information and Computer Science (2000)

    Google Scholar 

  20. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools with Java implementations. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  21. Herrera, F., Hervás, C., Otero, J., Sánchez, L.: Un estudio empírico preliminary sobre los tests estadísticos más habituales en el aprendizaje automático. In: Tendencias de la Minería de Datos en España. Red Española Minería Datos (2004)

    Google Scholar 

  22. R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2004) 3-900051-07-0, http://www.R-project.org

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ramos-Jiménez, G., del Campo-Ávila, J., Morales-Bueno, R. (2005). E-CIDIM: Ensemble of CIDIM Classifiers. In: Li, X., Wang, S., Dong, Z.Y. (eds) Advanced Data Mining and Applications. ADMA 2005. Lecture Notes in Computer Science(), vol 3584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11527503_14

Download citation

  • DOI: https://doi.org/10.1007/11527503_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27894-8

  • Online ISBN: 978-3-540-31877-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics