Skip to main content

Quantum Annealing of a ±J Spin Glass and a Kinetically Constrained System

  • Chapter
  • First Online:
Quantum Annealing and Other Optimization Methods

Part of the book series: Lecture Notes in Physics ((LNP,volume 679))

Abstract

Thermal annealing [1] is known to be a very general and useful method for obtaining approximate solutions of multi-variable optimization problems. Such a problem consists of the minimization of a multi-variable function (costfunction) with respect to its variables (sometimes obeying a given set of constraints). The cost-function landscape are often very rugged, consisting of local minima surrounded by high cost-barriers. In such cases optimization using iterative minimization heuristics can fail miserably by getting trapped into an arbitrarily shallow minimum. In thermal annealing a fictitious thermal fluctuation is introduced into the minimization dynamics to generate possibility of going uphill. This enables the system to get out of the shallow traps and explore the landscape more widely to find out a reasonably deep minimum for settling down. The thermal fluctuation is eventually, but slowly, reduced to zero and one ends up, to a good approximation, with a globally optimized solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Kirkpatrick, C.D. Gelatt, Jr., M.P. Vecchi, Science 220, 671 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  2. T. Kadowaki and H. Nishimori, Phys. Rev. E 58 5355 (1998)

    Article  ADS  Google Scholar 

  3. J. Brook, D. Bitko, T.F. Rosenbaum and G. Aeppli, Science 284 779 (1999)

    Article  ADS  Google Scholar 

  4. P. Ray, B.K. Chakrabarti and A. Chakrabarti, Phys. Rev. B 39 11828 (1989)

    Article  ADS  Google Scholar 

  5. E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and D. Preda, Science 292, 472 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  6. S. Suzuki and M. Okada, Simulated Quantum Annealing by the Real-time Evolution. In: Lect. Notes Phys. 679 (2005) pp. 207-238

    Article  ADS  Google Scholar 

  7. G.E. Santoro, R. Martonak, E. Tosatti and R. Car, Science 295, 2427 (2002); R. Martonak, G.E. Santoro and E. Tosatti Phys. Rev. E 70, 057701 (2004)

    Google Scholar 

  8. D. Battaglia, L. Stella, O. Zagordi, G.E. Santro and E. Tosatti, Deterministic and Stochastic Quantum Annealing Approches. In: Lect. Notes Phys. 679 (2005) pp. 171-206

    Article  ADS  Google Scholar 

  9. D.-H. Kim and J.-J. Kim, Phys. Rev. B 66 054432 (2002); see however, D. Thirumalai, Q. Li and T.R. Kirkpatrick, J. Phys. A 22 3339 (1989); see also J.-J. Kim Ergodicity, Replica Symmetry, Spin Glass and Quantum Phase Transition. In: Lect. Notes Phys. 679 (2005), pp. 101-129

    Google Scholar 

  10. B.K. Chakrabarti, A. Dutta, P. Sen: Quantum Ising Phases and Transitions in Transverse Ising Models. In: Lect. Notes Phys. M41 (1996); see also B.K Chakrabarti and A. Das, Transverse Ising Model, Glass and Quantum Annealing. In: Lect. Notes Phys. 679 (2005) pp. 3-38

    Google Scholar 

  11. M. Mezard, G. Parisi and M.A. Virasoro, Spin Glass Theory And Beyond (World Scientific, Singapore, 1987)

    MATH  Google Scholar 

  12. J.P. Neirotti and M.J. de Oliveira, Phys. Rev. B 53, 668 (1996); M.J. de Oliveira and J.R.N. Chiappin Physica A 307 (1997)

    Google Scholar 

  13. E. Seneta Non-negative Matrices and Markov Chains (2nd Ed.) (Springer-Verlag, New York, 1981)

    MATH  Google Scholar 

  14. G.H. Fredrickson and H.C. Andersen, Phys. Rev. Lett. 53 1224 (1984); G.H. Fredrickson and H.C. Andersen, J. Chem. Phys. 83 5822 (1985)

    Google Scholar 

  15. J. Jackle and S. Eisinger, Z. Phys. B 84 115 (1991); M.A. Munoz, A. Gabrielli, H. Inaoka and L. Peitronero, Phys. Rev. E 57 4354 (1998); P. Sollich, M.R. Evans, Phys. Rev. Lett. 83 3238, F. Ritort and P. Sollich, Adv. Phys., 52 219 (2003)

    Google Scholar 

  16. A. Das, B.K. Chakrabarti and R.B. Stinchcombe, Phys. Rev. E 72, 026701 (2005).

    Article  ADS  Google Scholar 

  17. J.G. Cordes and A.K. Das, Superlatt. Microstr., 29 121 (2001), R. Koc, D. Haydargil, arXiv:quant-ph/0410067 v1 (2004)

    Google Scholar 

  18. B.K. Chakrabarti and A. Das, Transverse Ising Model, Glass and Quantum Annealing. In: Lect. Notes Phys. 679 (2005) pp. 3-38

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Arnab Das Bikas K. Chakrabarti

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Das, A., K. Chakrabarti, B. Quantum Annealing of a ±J Spin Glass and a Kinetically Constrained System. In: Das, A., K. Chakrabarti, B. (eds) Quantum Annealing and Other Optimization Methods. Lecture Notes in Physics, vol 679. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11526216_9

Download citation

  • DOI: https://doi.org/10.1007/11526216_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27987-7

  • Online ISBN: 978-3-540-31515-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics