Skip to main content

Dynamical Frustration in ANNNI Model and Annealing

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 679))

Abstract

Simulated annealing is usually applied to systems with frustration, like spin glasses and optimisation problems, where the energy landscape is complex with many spurious minima. There are certain other systems, however, which have very simple energy landscape picture and ground states, but still the system fails to reach its ground state during a energy-lowering dynamical process. This situation corresponds to “dynamical frustration ”. We have specifically considered the case of the axial next nearest neighbour (ANNNI) chain, where such a situation is encountered. In Sect. II, we elaborate the notion of dynamic frustration with examples and in Sect. III, the dynamics in ANNNI model is discussed in detail. The results of application of the classical and quantum annealing are discussed in Sects. IV and V. Summary and some concluding comments are given in the last section.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. D. Gunton, M. San Miguel and P. S. Sahni, Phase Transitions and critical phenomena, Vol 8, eds. C. Domb and J. L. Lebowitz (Academic Press, London, 1984).

    Google Scholar 

  2. A. J. Bray, Adv. Phys. 43 357 (1994) and the references therein.

    Article  MathSciNet  ADS  Google Scholar 

  3. For a review, see S. N. Majumdar, Curr. Sci. 77 370 (1999).

    Google Scholar 

  4. B. Derrida, A. J. Bray and C. Godreche, J. Phys. A 27 L357 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. D. Stauffer, J. Phys. A 27 5029 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  6. P. L. Krapivsky, E. Ben-Naim and S. Redner, Phys. Rev. E 50 2474 (1994).

    Article  ADS  Google Scholar 

  7. V. Spirin, P. L. Krapivsky and S. Redner, Phys. Rev. E 63 036118 (2001); Phys. Rev. E 65 016119 (2002).

    Google Scholar 

  8. P. Sundaramurthy and D. L. Stein, cond-mat/0411286.

    Google Scholar 

  9. C. Godreche and J. M. Luck, cond-mat/0412077.

    Google Scholar 

  10. C. M. Newman and D. L. Stein, Phys. Rev. Lett. 82 3944 (1999).

    Article  ADS  Google Scholar 

  11. S. Jain, Phys. Rev.E 60 R2445 (1999).

    Article  ADS  Google Scholar 

  12. P. M. Gleiser, F. A. Tamarit, S. A. Cannas and M. A. Montemurro, Phys. Rev. B 68 134401 (2003).

    Article  ADS  Google Scholar 

  13. P. Svenson, Phys. Rev. E 64 036122 (2001).

    Article  ADS  Google Scholar 

  14. O. Haggstrom, Physica A 310 275 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  15. D. Boyer and O. Miramontes, Phys. Rev. E 67 R035102 (2003).

    Article  ADS  Google Scholar 

  16. P. Svenson and D. A. Johnson, Phys. Rev. E 65 036105 (2002).

    Article  ADS  Google Scholar 

  17. J. Y. Zhu and H. Zhu, Phys. Rev. E 67 026125 (2003).

    Article  ADS  Google Scholar 

  18. D. Jeong, M. Y. Choi and H. Park, cond-mat/0501099.

    Google Scholar 

  19. The persistence probability in case of four dimensional lattice, however, does not show a power law decay due to blocking (D. Stauffer, Int. J. Mod. Phys. C 8 361 (1997)).

    Google Scholar 

  20. N. R. da Silva and J. M. Silva, Phys. Lett. A 135 373 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  21. C. P. Herrero, Phys. Rev. E 65 066110 (2002).

    Article  ADS  Google Scholar 

  22. H. Hong, B. J. Kim and M. Y Choi, Phys. Rev. E 66 011107 (2002).

    Article  ADS  Google Scholar 

  23. J. V. Lopes et al., cond-mat/0402138.

    Google Scholar 

  24. W. Selke, Phys. Rep. 170 213 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  25. S. Redner and P. L. Krapivsky, J. Phys. A 31 9229 (1998)

    Article  ADS  Google Scholar 

  26. P. Sen and S. Dasgupta, J. Phys. A 37 11949 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. P. K. Das and P. Sen, cond-mat/0503138.

    Google Scholar 

  28. T. Kadawoki and H. Nishimori, Phys. Rev. E 58 5355 (1998).

    Article  ADS  Google Scholar 

  29. G. E. Santoro, R. Martonak, E. Tosatti and R. Car, Science 295 2427 (2002).

    Article  ADS  Google Scholar 

  30. M. Suzuki, Prog. Theor. Phys. 56 1454 (1976).

    Article  ADS  MATH  Google Scholar 

  31. B. K. Chakrabarti, A. Dutta and P. Sen, Quantum Ising Phases and Transitions in Transverse Ising models. In: Lect. Notes Phys. M41, (1996).

    Google Scholar 

  32. D. A. Huse and D. S. Fisher, Phys. Rev. Lett. 57 2203 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Arnab Das Bikas K. Chakrabarti

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Sen, P., K. Das, P. Dynamical Frustration in ANNNI Model and Annealing. In: Das, A., K. Chakrabarti, B. (eds) Quantum Annealing and Other Optimization Methods. Lecture Notes in Physics, vol 679. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11526216_12

Download citation

  • DOI: https://doi.org/10.1007/11526216_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27987-7

  • Online ISBN: 978-3-540-31515-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics