Skip to main content

Combinatorial Optimization and the Physics of Disordered Systems

  • Chapter
  • First Online:
Quantum Annealing and Other Optimization Methods

Part of the book series: Lecture Notes in Physics ((LNP,volume 679))

Abstract

The purpose of this chapter of this monograph is to confront the reader with a number of optimization algorithms that are exact and polynomial in time and which have interesting applications in the physics of disordered systems. These are solid materials which contain a substantial degree of quenched disorder, have been an experimental and a theoretical challenge for physicists for many decades. The different thermodynamic phases emerging in random magnets, the aging properties and memory effects of spin glasses, the disorder induced conductor-to-insulator transition in electronic or bosonic systems, the collective behaviour of magnetic flux lines in amorphous high temperature superconductors, and the roughening transition of a disordered charge density wave systems are only a few examples for these fascinating phenomena that occur due to the presence of quenched disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Rieger, Lecture Notes in Physics 501 (ed. J. Kertesz and I. Kondor), pp. 122-158 (Springer Verlag, Berlin-Heidelberg-New York, 1998).

    Google Scholar 

  2. M. Alava, P. Duxbury, C. Moukarzel and H. Rieger, Phase Transition and Critical Phenomena, Vol. 18 (ed. C. Domb and J. L. Lebowitz), pp. 141-317, (Academic Press, Cambridge, 2000).

    Google Scholar 

  3. A. Hartmann and H. Rieger, Optimization in Physics (Wiley VCH, Darmstadt, 2002).

    MATH  Google Scholar 

  4. T. Halpin-Healy and Y.-C. Zhang, Phys. Rep. 254, 215 (1995).

    Article  ADS  Google Scholar 

  5. C.-K. Peng, S. Havlin, M. Schwartz and H.E. Stanley, Phys. Rev. A 44, 2239 (1991); N.-N. Pang, Y.-K. Yu and T. Halpin-Healy, Phys. Rev. E 52, 3224 (1995).

    Google Scholar 

  6. M. Marsili and Y.-C. Zhang, Phys. Rev. E 57, 4814 (1998); N. Schwartz, A.L. Nazaryev and S. Havlin, Phys. Rev. E 58, 7642 (1998).

    Google Scholar 

  7. R. Schorr and H. Rieger, Europ. Phys. J. 33, 347 (2003).

    ADS  Google Scholar 

  8. G. Blatter (1994) Rev. Mod. Phys. 66 1125 Occurrence Handle10.1103/RevModPhys.66.1125 Occurrence Handle1994RvMP...66.1125B

    Article  ADS  Google Scholar 

  9. M. Doi and S.F. Edwards, The theory of Polymer Dynamics, (Oxford University Press, Oxford, 1986).

    Google Scholar 

  10. V. Petäjä, D.-S. Lee, H. Rieger, and M. Alava. J. Stat. Mech. P10010 (2004).

    Google Scholar 

  11. D.A. Huse and C.L. Henley, Phys. Rev. Lett. 54, 2708 (1985); M. Kardar, Phys. Rev. Lett. 55, 2924(C) (1985); D.A. Huse, C.L. Henley and D.S. Fisher, Phys. Rev. Lett. 55, 2924 (1985).

    Google Scholar 

  12. B.M. Forrest and L.H. Tang, Phys. Rev. Lett. 64, 1405 (1990); J.M. Kim, M.A. Moore, A.J. Bray, Phys. Rev. A 44, 2345 (1991).

    Google Scholar 

  13. A.-L. Barabasi and H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995).

    MATH  Google Scholar 

  14. J. Toner and D.P. DiVicenzo, Phys, Rev. B 41, 632 (1990); T. Hwa and D.S. Fisher, Phys. Rev. Lett. 72, 2466 (1994).

    Google Scholar 

  15. C. Zeng, A. Alan Middleton, and Y. Shapir, Phys. Rev. Lett. 77, 3204 (1996); S. Bogner, T. Emig and T. Nattermann, Phys. Rev. 63 174501 (2001).

    Google Scholar 

  16. T. Giamarchi and P. Le Doussal, Phys. Rev. B 52, 1242 (1995).

    Article  ADS  Google Scholar 

  17. D. McNamara and A. Alan Middleton, Phys. Rev. B 60 10062 (1999).

    Article  ADS  Google Scholar 

  18. V. Petäjä, M. Alava, and H. Rieger, Int. J. Mod. Phys. C 12, 421 (2001).

    Article  ADS  Google Scholar 

  19. B. Drossel and M. Kardar, Phys. Rev. E 53, 5861 (1996).

    Article  ADS  Google Scholar 

  20. R. Bikbov and S. Nechaev, Phys. Rev. Lett. 87, 150602 (2001).

    Article  ADS  Google Scholar 

  21. V. Petäjä, M. Alava, and H. Rieger, cond-mat/0302509.

    Google Scholar 

  22. H. Rieger and U. Blasum, Phys. Rev. B 55 7394R (1997); F. Pfeiffer and H. Rieger, J. Phys. A 33, 2489 (2000).

    Google Scholar 

  23. H.S. Bokil and A.P. Young, Phys. Rev. Lett. 74, 3021 (1995).

    Article  ADS  Google Scholar 

  24. J. Kisker and H. Rieger, Phys. Rev. B 58, R8873 (1998); F. Pfeiffer and H. Rieger, Phys. Rev. B 60, 6304 (1999).

    Google Scholar 

  25. F.O. Pfeiffer and H. Rieger, J. Phys. C 14, 2361 (2002); F.O. Pfeiffer and H. Rieger, Phys. Rev. E 67, 056113 (2003).

    Google Scholar 

  26. T. Nattermann, Phys. Rev. Lett. 64, 2454 (1990); T. Giarmachi and P. Le Doussal, Phys. Rev. Lett. 72, 1530 (1994); and Phys. Rev. B 52, 1242 (1995).

    Google Scholar 

  27. J.-P. Bouchaud and A. Georges, Phys. Rev. Lett. 68, 3908 (1992).

    Article  ADS  Google Scholar 

  28. T. Emig and T. Nattermann, Phys. Rev. Lett. 79, 5090 (1997); Eur. J. Phys. B 8, 525 (1999).

    Google Scholar 

  29. E.T. Seppälä, M.J. Alava, and P.M. Duxbury, Phys. Rev. E 63, 036126 (2001).

    Article  ADS  Google Scholar 

  30. J.D. Noh and H. Rieger, Phys. Rev. Lett. 87, 176102 (2001); Phys. Rev. E 66, 036117 (2002).

    Google Scholar 

  31. A.A. Middleton, Phys. Rev. E 52, R3337 (1995).

    Article  ADS  Google Scholar 

  32. N. Kawashima and H. Rieger, Europhys. Lett. 39, 85 (1997).

    Article  ADS  Google Scholar 

  33. A.K. Hartmann, A.P. Young, Phys. Rev. B 66, 094419 (2002); A.K. Hartmann, A.J. Bray, A.C. Carter, M.A. Moore, A.P. Young, Phys. Rev. B 66, 224401 (2002).

    Google Scholar 

  34. A.A. Middleton, Phys. Rev. B 61, 14787 (2000).

    Article  ADS  Google Scholar 

  35. R. Juhasz, H. Rieger, F. Iglóoi, Phys. Rev. E64, 056122 (2001); J-Ch. Anglesd'Auriac, F. Iglói, Phys. Rev. Lett. 90, 190601 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Arnab Das Bikas K. Chakrabarti

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Rieger, H. Combinatorial Optimization and the Physics of Disordered Systems. In: Das, A., K. Chakrabarti, B. (eds) Quantum Annealing and Other Optimization Methods. Lecture Notes in Physics, vol 679. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11526216_11

Download citation

  • DOI: https://doi.org/10.1007/11526216_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27987-7

  • Online ISBN: 978-3-540-31515-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics