Skip to main content

States of Distributed Objects in Conceptual Semantic Systems

  • Conference paper
Conceptual Structures: Common Semantics for Sharing Knowledge (ICCS 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3596))

Included in the following conference series:

Abstract

Our classical understanding of objects in spatiotemporal systems is based on the idea that such an object is at each moment at exactly one place. As long as the notions of “moment” and “place” are not made explicit in their granularity the meaning of that idea is not clear. It became clear by the introduction of Conceptual Time Systems with Actual Objects and a Time Relation (CTSOT) using an explicit granularity description for space and time and an object representation such that each object is at each moment in exactly one state – where the states are formal concepts of the CTSOT.

For the purpose of introducing also a granularity tool for the objects the author has defined Conceptual Semantic Systems where relational information is combined with the granularity tool of conceptual scales. That led to a mathematical definition of particles and waves such that the usual notions of particles and waves in physics are covered. Waves and wave packets are “distributed objects” in the sense that they may appear simultaneously at several places.

Now the question arises how to introduce a mathematical notion for the “state of a distributed object”, as for example the state of an electron or the state of an institution, in the general framework of Conceptual Semantic Systems. That question is answered in this paper by the introduction of the notion of the “aspect of a concept \(\textbf{c}\) with respect to some view Q”, in short “the Q-aspect of \(\textbf{c}\)” which is defined as a suitable set of formal concepts. For spatiotemporal Conceptual Semantic Systems the state of an object \(\textbf{p}\) at a time granule \(\textbf{t}\) is defined as the spatial aspect of the infimum of “realizations” of \(\textbf{p}\) and \(\textbf{t}\). The one-element states of “actual objects” in a CTSOT are special cases of these states which may have many elements.

The information units (instances) of a Conceptual Semantic System connect the concepts of different semantical scales, for example scales for objects, space, and time. That allows for defining the information distribution of the Q-aspect of a distributed object \(\textbf{c}\) which leads to a mathematical definition of the “BORN-frequency”; that is defined as a relative frequency of information units which can be understood as a very meaningful mathematical representation of the famous “probability distribution of a quantum mechanical system”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. Phys. Rev. 85 (1952)

    Google Scholar 

  2. Born, M.: Die statistische Deutung der Quantenmechanik. Nobelvortrag. In: [Bo63], II, 430-441. English translation: The statistical interpretation of quantum mechanics. Nobel Lecture, December 11 (1954), http://nobelprize.org/physics/laureates/1954/born-lecture.html

  3. Born, M.: Ausgewählte Abhandlungen. Vandenhoeck and Ruprecht, Göttingen (1963)

    MATH  Google Scholar 

  4. Butterfield, J. (ed.): The Arguments of Time. Oxford University Press, Oxford (1999)

    Google Scholar 

  5. Castellani, E. (ed.): Interpreting Bodies: Classical and Quantum Objects in Modern Physics. Princeton University Press, Princeton (1998)

    Google Scholar 

  6. Dürr, D.: Bohmsche Mechanik als Grundlage der Quantenmechanik. Springer, Berlin (2001)

    MATH  Google Scholar 

  7. Ganter, B., Wille, R.: Formal Concept Analysis: mathematical foundations. Springer, Heidelberg (1996); German version: Formale Begriffsanalyse: Mathematische Grundlagen. Springer, Heidelberg (1996)

    Google Scholar 

  8. de Moor, A., Lex, W., Ganter, B. (eds.): ICCS 2003. LNCS, vol. 2746. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  9. Kuchar, K.: The Problem of Time in Quantum Geometrodynamics. In: [But99], pp. 169–195

    Google Scholar 

  10. Passon, O.: Bohmsche Mechanik. Eine elementare Einführung in die deterministische Interpretation der Quantenmechanik. Verlag Harri Deutsch, Frankfurt (2004)

    MATH  Google Scholar 

  11. Prediger, S., Wille, R.: The lattice of concept graphs of a relationally scaled context. In: Tepfenhart, W.M. (ed.) ICCS 1999. LNCS, vol. 1640, pp. 401–414. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  12. Priss, U., Corbett, D.R., Angelova, G. (eds.): ICCS 2002. LNCS (LNAI), vol. 2393. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  13. Reichenbach, H.: The Direction of Time. In: Reichenbach, M. (ed.) The Direction of Time, University of California Press, Berkeley (1991); (Originally published in 1956)

    Google Scholar 

  14. Sowa, J.F.: Conceptual structures: information processing in mind and machine. Adison-Wesley, Reading (1984)

    MATH  Google Scholar 

  15. Strahringer, S., Wille, R.: Towards a Structure Theory for Ordinal Data. In: Schader, M. (ed.) Analysing and Modelling Data and Knowledge, pp. 129–139. Springer, Heidelberg (1992)

    Google Scholar 

  16. Toraldo di Francia, G.: A World of Individual Objects? In: [Ca98], 21–29

    Google Scholar 

  17. Wille, R.: Conceptual Graphs and Formal Concept Analysis. In: Delugach, H.S., Keeler, M.A., Searle, L., Lukose, D., Sowa, J.F. (eds.) ICCS 1997. LNCS (LNAI), vol. 1257, pp. 290–303. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  18. Wille, R.: Contextual Logic summary. In: Stumme, G. (ed.) Working with conceptual structures: Contributions to ICCS 2000, pp. 265–276. Shaker-Verlag, Aachen (2000)

    Google Scholar 

  19. Wille, R.: Existential concept graphs of power context families. In: [PCA99], pp. 382–395

    Google Scholar 

  20. Wille, R.: Conceptual Contents as Information - Basics for Contextual Judgment Logic. In: [MLG03], pp. 1–15

    Google Scholar 

  21. Wolff, K.E.: Concepts, States, and Systems. In: Dubois, D.M. (ed.): Computing Anticipatory Systems. In: CASYS 1999 - Third International Conference, Liège, Belgium, 1999, American Institute of Physics, Conference Proceedings 517, pp. 83–97 (2000)

    Google Scholar 

  22. Wolff, K.E.: Towards a Conceptual System Theory. In: B. Sanchez, N. Nada, A. Rashid, T. Arndt, M. Sanchez (eds.): Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics, SCI, vol. II: Information Systems Development, International Institute of Informatics and Systemics, pp. 124–132 (2000); ISBN 980-07-6688-X

    Google Scholar 

  23. Wolff, K.E.: Temporal Concept Analysis. In: Mephu Nguifo, E., et al. (eds.) ICCS 2001 International Workshop on Concept Lattices-Based Theory, Methods and Tools for Knowledge Discovery in Databases, Stanford University, Palo Alto (CA), pp. 91–107 (2001)

    Google Scholar 

  24. Wolff, K.E.: Transitions in Conceptual Time Systems. In: D.M. Dubois (ed.): International Journal of Computing Anticipatory Systems, vol. 11, CHAOS 2002, pp. 398–412 (2002)

    Google Scholar 

  25. Wolff, K.E.: Interpretation of Automata in Temporal Concept Analysis. In: [PCA99], pp. 341–353

    Google Scholar 

  26. Wolff, K.E.: Towards a Conceptual Theory of Indistinguishable Objects. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 180–188. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  27. Wolff, K.E.: States, Transitions, and Life Tracks in Temporal Concept Analysis. Preprint Darmstadt University of Applied Sciences, Mathematics and Science Faculty (2004)

    Google Scholar 

  28. Wolff, K.E.: ‘Particles’ and ‘Waves’ as Understood by Temporal Concept Analysis. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 126–141. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  29. Wolff, K.E., Yameogo, W.: Time Dimension, Objects, and Life Tracks - A Conceptual Analysis. In: [MLG03], pp. 188–200

    Google Scholar 

  30. Wolff, K.E., Yameogo, W.: Turing Machine Representation in Temporal Concept Analysis. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 360–374. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wolff, K.E. (2005). States of Distributed Objects in Conceptual Semantic Systems. In: Dau, F., Mugnier, ML., Stumme, G. (eds) Conceptual Structures: Common Semantics for Sharing Knowledge. ICCS 2005. Lecture Notes in Computer Science(), vol 3596. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11524564_17

Download citation

  • DOI: https://doi.org/10.1007/11524564_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27783-5

  • Online ISBN: 978-3-540-31885-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics