Skip to main content

Replacement Paths and k Simple Shortest Paths in Unweighted Directed Graphs

  • Conference paper
Book cover Automata, Languages and Programming (ICALP 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3580))

Included in the following conference series:

Abstract

Let G=(V,E) be a directed graph and let P be a shortest path from s to t in G. In the replacement paths problem we are required to find, for every edge e on P, a shortest path from s to t in G that avoids e. We present the first non-trivial algorithm for computing replacement paths in unweighted directed graphs (and in graphs with small integer weights). Our algorithm is Monte-Carlo and its running time is \({\tilde O}(m\sqrt{n})\). Using the improved algorithm for the replacement paths problem we get an improved algorithm for finding the ksimple shortest paths between two given vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baswana, S., Hariharan, R., Sen, S.: Improved decremental algorithms for transitive closure and all-pairs shortest paths. In: Proc. of 34th STOC, pp. 117–123 (2002)

    Google Scholar 

  2. Baswana, S., Hariharan, R., Sen, S.: Maintaining all-pairs approximate shortest paths under deletion of edges. In: Proc. of 14th SODA, pp. 394–403 (2003)

    Google Scholar 

  3. Demetrescu, C., Thorup, M.: Oracles for distances avoiding a link-failure. In: Proc. of 13th SODA, pp. 838–843 (2002)

    Google Scholar 

  4. Demetrescu, C., Thorup, M., Alam Chaudhury, R., Ramachandran, V.: Oracles for distances avoiding a link-failure

    Google Scholar 

  5. Eppstein, D.: Finding the k shortest paths. SIAM Journal on Computing 28(2), 652–673 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Henzinger, M., King, V.: Fully dynamic biconnectivity and transitive closure. In: Proc. of 36th FOCS, pp. 664–672 (1995)

    Google Scholar 

  7. Hershberger, J., Suri, S.: Vickrey prices and shortest paths: what is an edge worth? In: Proc. of 42nd FOCS, pp. 252–259 (2001)

    Google Scholar 

  8. Hershberger, J., Suri, S.: Erratum to “vickrey pricing and shortest paths: What is an edge worth?” In: Proc. of 43rd FOCS, p. 809 (2002)

    Google Scholar 

  9. Hershberger, J., Suri, S., Bhosle, A.: On the difficulty of some shortest path problems. In: Proc. of the 20th STACS, pp. 343–354 (2003)

    Google Scholar 

  10. Karger, D.R., Koller, D., Phillips, S.J.: Finding the hidden path: time bounds for all-pairs shortest paths. SIAM Journal on Computing 22, 1199–1217 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Katoh, N., Ibaraki, T., Mine, H.: An efficient algorithm for K shortest simple paths. Networks 12(4), 411–427 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lawler, E.L.: A procedure for computing the K best solutions to discrete optimization problems and its application to the shortest path problem. Management Science 18, 401–405 (1971-1972)

    Article  MathSciNet  Google Scholar 

  13. Malik, K., Mittal, A.K., Gupta, S.K.: The k most vital arcs in the shortest path problem. Operations Research Letters 8(4), 223–227 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Nardelli, E., Proietti, G., Widmayer, P.: A faster computation of the most vital edge of a shortest path. Information Processing Letters 79(2), 81–85 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Nisan, N., Ronen, A.: Algorithmic mechanism design. Games and Economic Behavior 35, 166–196 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Roditty, L., Zwick, U.: Dynamic approximate all-pairs shortest paths in undirected graphs. In: Proc. of 45th FOCS, pp. 499–508 (2004)

    Google Scholar 

  17. Roditty, L., Zwick, U.: On dynamic shortest paths problems. In: Proc. of 12th ESA, pp. 580–591 (2004)

    Google Scholar 

  18. Thorup, M.: Undirected single-source shortest paths with positive integer weights in linear time. Journal of the ACM 46, 362–394 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ullman, J.D., Yannakakis, M.: High-probability parallel transitive-closure algorithms. SIAM Journal on Computing 20, 100–125 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Yen, J.Y.: Finding the K shortest loopless paths in a network. Management Science 17, 712–716 (1970-1971)

    Article  MathSciNet  Google Scholar 

  21. Zwick, U.: All-pairs shortest paths using bridging sets and rectangular matrix multiplication. Journal of the ACM 49, 289–317 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Roditty, L., Zwick, U. (2005). Replacement Paths and k Simple Shortest Paths in Unweighted Directed Graphs. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds) Automata, Languages and Programming. ICALP 2005. Lecture Notes in Computer Science, vol 3580. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11523468_21

Download citation

  • DOI: https://doi.org/10.1007/11523468_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27580-0

  • Online ISBN: 978-3-540-31691-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics