Skip to main content

Sequence Detector Networks and Associative Learning of Grammatical Categories

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3575))

Abstract

A fundamental prerequisite for language is the ability to distinguish word sequences that are grammatically well-formed from ungrammatical word strings and to generalise rules of syntactic serial order to new strings of constituents. In this work, we extend a neural model of syntactic brain mechanisms that is based on syntactic sequence detectors (SDs). Elementary SDs are neural units that specifically respond to a sequence of constituent words AB, but not (or much less) to the reverse sequence BA. We discuss limitations of the original version of the SD model (Pulvermüller, Theory in Biosciences, 2003) and suggest optimal model variants taking advantage of optimised neuronal response functions, non-linear interaction between inputs, and leaky integration of neuronal input accumulating over time. A biologically more realistic model variant including a network of several SDs is used to demonstrate that associative Hebb-like synaptic plasticity leads to learning of word sequences, formation of neural representations of grammatical categories, and linking of sequence detectors into neuronal assemblies that may provide a biological basis of syntactic rule knowledge. We propose that these syntactic neuronal assemblies (SNAs) underlie generalisation of syntactic regularities from already encountered strings to new grammatical word sequences.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chomsky, N.: Syntactic structures. Mouton, The Hague (1957)

    Google Scholar 

  2. Hauser, M., Chomsky, N., Fitch, W.: The faculty of language: what is it, who has it, and how did it evolve? Science 298(5598), 1569–1579 (2002)

    Article  Google Scholar 

  3. Elman, J.: Finding structure in time. Cognitive Science 14, 179–211 (1990)

    Article  Google Scholar 

  4. Elman, J., Bates, L., Johnson, M., Karmiloff-Smith, A., Parisi, D., Plunkett, K.: Rethinking innateness. A connectionist perspective on development. MIT Press, Cambridge (1996)

    Google Scholar 

  5. Pulvermüller, F.: The neuroscience of language: on brain circuits of words and serial order. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  6. Pulvermüller, F.: Sequence detectors as a basis of grammar in the brain. Theory in Bioscience 122, 87–103 (2003)

    Google Scholar 

  7. Kleene, S.: Representation of events in nerve nets and finite automata. In: Shannon, C., McCarthy, J. (eds.) Automata studies, pp. 3–41. Princeton University Press, Princeton (1956)

    Google Scholar 

  8. Braitenberg, V., Heck, D., Sultan, F.: The detection and generation of sequences as a key to cerebellar function: experiments and theory. Behavioral and Brain Sciences 20, 229–245 (1997)

    Google Scholar 

  9. Reichardt, W., Varju, D.: Ubertragungseigenschaften im Auswertesystem für das Bewegungssehen. Zeitschrift für Naturforschung 14b, 674–689 (1959)

    Google Scholar 

  10. Egelhaaf, M., Borst, A., Reichardt, W.: Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly’s nervous system. Journal of the Optical Society of America (A) 6, 1070–1087 (1989)

    Article  Google Scholar 

  11. Fuster, J.: Memory in the cerebral cortex. MIT Press, Cambridge (1999)

    Google Scholar 

  12. Knoblauch, A., Pulvermüller, F.: Associative learning of discrete grammatical categories and rules (2005) (in preparation)

    Google Scholar 

  13. Destexhe, A., Mainen, Z., Sejnowski, T.: Kinetic models of synaptic transmission. In: [15], ch. 1, pp. 1–25

    Google Scholar 

  14. Knoblauch, A., Wennekers, T., Sommer, F.: Is voltage-dependent synaptic transmission in NMDA receptors a robust mechanism for working memory? Neurocomputing 44-46, 19–24 (2002)

    Article  Google Scholar 

  15. Koch, C., Segev, I. (eds.): Methods in neuronal modeling. MIT Press, Cambridge (1998)

    Google Scholar 

  16. Palm, G.: On associative memories. Biological Cybernetics 36, 19–31 (1980)

    Article  MATH  Google Scholar 

  17. Palm, G.: Neural Assemblies. An Alternative Approach to Artificial Intelligence. Springer, Berlin (1982)

    Google Scholar 

  18. Knoblauch, A., Palm, G.: Pattern separation and synchronization in spiking associative memories and visual areas. Neural Networks 14, 763–780 (2001)

    Article  Google Scholar 

  19. Pulvermüller, F.: A brain perspective on language mechanisms: from discrete neuronal ensembles to serial order. Progress in Neurobiology 67, 85–111 (2002)

    Article  Google Scholar 

  20. Knoblauch, A.: Synchronization and pattern separation in spiking associative memory and visual cortical areas. PhD thesis, Department of Neural Information Processing, University of Ulm, Germany (2003)

    Google Scholar 

  21. Pulvermüller, F., Knoblauch, A.: Emergence of discrete combinatorial rules in universal grammar networks (2005) (in preparation)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Knoblauch, A., Pulvermüller, F. (2005). Sequence Detector Networks and Associative Learning of Grammatical Categories. In: Wermter, S., Palm, G., Elshaw, M. (eds) Biomimetic Neural Learning for Intelligent Robots. Lecture Notes in Computer Science(), vol 3575. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11521082_3

Download citation

  • DOI: https://doi.org/10.1007/11521082_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27440-7

  • Online ISBN: 978-3-540-31896-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics