Self-deployment, Self-configuration:Critical Future Paradigms for Wireless Access Networks

  • Francis J. Mullany
  • Lester T. W. Ho
  • Louis G. Samuel
  • Holger Claussen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3457)


To combat the increasing significance of deployment and configuration costs, the concept of a self-deploying, self-configuring radio access network is discussed. It is proposed that the basic sciences of complex systems (cellular automata, game theory, ecology modeling) can be exploited to design algorithms for such a system. An example, taken from the field of cellular automata, is presented for a network capable of self-adaptation to achieve universal radio coverage in a simplified environment.


Radio access networks auto-configuration self-deployment self-organization cognizant networks complexity theory game theory cellular automata ecology modeling 


  1. 1.
    Wireless World Research Forum, The Book of Visions 2001: Visions of the Wireless World (2001),
  2. 2.
    WWI Ambient Networks Project, IST Project Number 507134,
  3. 3.
    Courcoubetis, C., Weber, R.: Pricing Communication Networks. Wiley, Chichester (2003)CrossRefGoogle Scholar
  4. 4.
    Gibney, M., Jennings, N., Vriend, N., Griffiths, J.: Market-Based Call Routing in Telecommunications Networks Using Adaptive Pricing and Real Bidding. In: Agent Technology for Communication Infrastructures. Wiley, Chichester (2001)Google Scholar
  5. 5.
    Rodoplu, V., Meng, T.: Core Capacity of Wireless Ad Hoc Networks. In: 5th International Symposium on Wireless Personal Multimedia Communications, vol. 1, pp. 247–251 (2002)Google Scholar
  6. 6.
    Sarkar, P.: A Brief History of Cellular Automata. ACM Computing Surveys 32(1), 88–107 (2000)CrossRefGoogle Scholar
  7. 7.
    Wolfram, S.: Universality and complexity in cellular automata. Physica D 10(1-2), 1–35 (1984)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Subrata, R., Zomaya, A.: Evolving Cellular Automata for Location Management in Mobile Computing Networks. IEEE Transactions on Parallel and Distributed Systems 14(1) (January 2003)Google Scholar
  9. 9.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, Oxford (1999)zbMATHGoogle Scholar
  10. 10.
    Hoppensteadt, F.: Mathematical Methods of Population Biology. Cambridge University Press, Cambridge (1982)zbMATHCrossRefGoogle Scholar
  11. 11.
    Nijkamp, P., Reggiani, A.: Non-linear evolution of dynamic spatial systems: The relevance of chaos and ecologically based models. Regional Science and Urban Economics 25, 183–210 (1995)CrossRefGoogle Scholar
  12. 12.
    Lopez-Ruiz, R., Mancini, H.L., Calbert, X.: A statistical measure of complexity. Physical Letters A. 209, 321–326 (1995)CrossRefGoogle Scholar
  13. 13.
    Shiner, J.S., Davidson, M., Landsberg, P.T.: Simple measure for complexity. Physical Review E. 59(2), 1459–1464 (1999)CrossRefGoogle Scholar
  14. 14.
    Ho, L.: Self-Organising Algorithms for Fourth Generation Wireless Networks. Ph.D. Thesis, Queen Mary and Westfield College University of London (November 2002)Google Scholar
  15. 15.
    Bak, P., Tang, C., Weisenfeld, K.: Self-organized criticality. Physical Review A. 38(1), 364–372 (1988)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Krishnamachari, B., Bejar, R., Wicker, S.: Phase transitional phenomena in wireless ad-hoc networks. Symposium on Ad-Hoc Wireless Networks, Globecom 2001 (November 2001)Google Scholar
  17. 17.
    Ho, L.T.W., Samuel, L.G., Pitts, J.M.: Applying Emergent Self-Organizing Behaviour for the Coordination of 4G Networks Using Complexity Metrics. Bell Labs Technical Journal 8(1), 5–26 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Francis J. Mullany
    • 1
  • Lester T. W. Ho
    • 1
  • Louis G. Samuel
    • 1
  • Holger Claussen
    • 1
  1. 1.Bell Labs ResearchLucent Technologies, The QuadrantWestlea, SwindonUnited Kingdom

Personalised recommendations