Advertisement

BIONETS: BIO-inspired NExt generaTion networkS

  • Iacopo Carreras
  • Imrich Chlamtac
  • Hagen Woesner
  • Csaba Kiraly
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3457)

Abstract

The amount of information in the new emerging all-embracing pervasive environments will be enormous. Current Internet protocol conceived almost forty years ago, were never planned for these emerging pervasive environments. The communications requirements placed by these protocols on the low cost sensor and tag nodes are in direct contradiction to the fundamental goals if these nodes, being small, inexpensive and maintenance free. This situation needs therefore a radically different approach to communication in these systems, especially since pervasive and ubiquitous networks are expected to be the key drivers of the all encompassing Internet of the coming decades. The fundamental disparity between the need for extremely dispensable, low cost devices, such as sensors or tags, and increasing communications load per device due to the presence of billions of nodes, that is creating an unbridgeable paradox, is therefore an insurmountable obstacle on the way to adoption when conventional networking architectures are being considered. Biological systems provide insights into principles which can be adopted to completely redefine the basic concepts of control, structure, interaction and function of the emerging pervasive environments. The study of the rules of genetics and evolution combined with mobility, leads to the definition of service oriented communication systems which are autonomous, and autonomously self-adaptive. The objective of this article is to ascertain how this paradigm shift, which views a network only as a randomly self-organizing by-product of a collection of self-optimizing services, may become the enabler of the new world of omnipresent low cost pervasive environments of the future.

References

  1. 1.
    Chlamtac, I., Carreras, I., Woesner, H.: From Internets to BIONETS: Biological Kinetic Service Oriented Networks, pp. 75–95. Springer Science, Heidelberg (2005)Google Scholar
  2. 2.
    Shah, R.C., Roy, S., Brunette, W., Jain, S.: Data mules: modeling a three-tier architecture for sparse sensor networks. In: Proceedings of the IEEE Workshop on Sensor Network Protocols and Applications (SNPA), pp. 30–41 (2003)Google Scholar
  3. 3.
    Zhao, W., Ammar, M., Zegura, E.: A message ferrying approach for data delivery in sparse mobile ad hoc networks. In: Proceedings of the 5th ACM international symposium on Mobile ad hoc networking and computing, pp. 187–198. ACM Press, New York (2004)CrossRefGoogle Scholar
  4. 4.
    Vahdat, A., Becker, D.: Epidemic routing for partially connected ad hoc networks. Technical Report CS-200006, Duke University (2000)Google Scholar
  5. 5.
    Grossglauser, M., Tse, D.N.C.: Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Trans. Netw. 10, 477–486 (2002)CrossRefGoogle Scholar
  6. 6.
    Nakano, T., Suda, T.: Adaptive and evolvable network services. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 151–162. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Wang, M., Suda, T.: The bio-networking architecture: A biologically inspired approach to the design of scalable, adaptive, and survivable/available network applications. In: SAINT, p. 43 (2001)Google Scholar
  8. 8.
    Suzuki, J., Suda, T.: Design and implementation of an scalable infrastructure for autonomous adaptive agents. In: Proc. of the 15th IASTED International Conference on Parallel and Distributed Computing and Systems (2003)Google Scholar
  9. 9.
    Shackleton, M., Saffre, F., Tateson, R., Bonsma, E., Roadknight, C.: Autonomic computing for pervasive ict a whole-system perspective. BT Technology Journal 3 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Iacopo Carreras
    • 1
  • Imrich Chlamtac
    • 1
  • Hagen Woesner
    • 1
  • Csaba Kiraly
    • 1
  1. 1.CREATE-NETTrentoItaly

Personalised recommendations