Dynamic and Contextualised Behavioural Knowledge in Autonomic Communications

  • Roy Sterritt
  • Maurice Mulvenna
  • Agnieszka Lawrynowicz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3457)


The conceptual architecture of autonomic communications requires a knowledge layer to facilitate effective, transparent and high level self-management capabilities. This pervasive knowledge plane can utilise the behaviour of autonomic communication regimes to monitor and intervene at many differing levels of network granularity. This paper discusses autonomic computing and autonomic communication, before outlining the role of behavioural knowledge in autonomic networks. Some research issues, in particular the concept of dynamic context as a method to acquire knowledge dynamically that will help to facilitate a successful realisation of the knowledge plane are explored and discussed.


Concept Drift Autonomic Communication Dynamic Context Autonomic Computing Autonomic Manager 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    EU IST FET, New Communication Paradigms for 2020, brain storming meeting, Brussels, Belgium (July 2003) (report published (September 2003)Google Scholar
  2. 2.
    Horn, P.: Autonomic computing: IBM perspective on the state of information technology. In: AGENDA 2001 (October 2001)Google Scholar
  3. 3.
    Smirnov, M., Popescu-Zeletin, R.: Autonomic Communication. In: presentation EU IST FET brainstorming meeting Communication Paradigms for 2020, Brussels, July 2003 (2020)Google Scholar
  4. 4.
    Clark, D., Partridge, C., Ramming, J.C., Wroclawski, J.T.: A Knowledge Plane for the Internet. In: Proc. Applications, technologies, architectures, and protocols for computer communication, ACM SIGCOMM 2003, Karlsruhe (2003)Google Scholar
  5. 5.
    Agosta, J.M., Crosby, S.: Network integrity by inference in distributed systems. In: NIPS Workshop on Robust Communication Dynamics in Complex Networks (2003)Google Scholar
  6. 6.
    Sterritt, R., Bustard, D.W.: Autonomic Computing - a Means of Achieving Dependability? In: Proc. IEEE Int. Conf. Engineering of Computer Based Systems (ECBS 2003), Huntsville, AL, USA, April 7-11, pp. 247–251 (2003)Google Scholar
  7. 7.
    Ganek, A.: Autonomic Computing: Implementing the Vision. In: Keynote presentation at the Autonomic Computing Workshop (AMS 2003), Seattle, WA, June 25 (2003)Google Scholar
  8. 8.
    Ganek, A.G., Corbi, T.A.: The dawning of the autonomic computing era. IBM Sys. J. 42(1), 5–18 (2003)CrossRefGoogle Scholar
  9. 9.
    Autonomic Computing Concepts, White Paper, IBM (2001)Google Scholar
  10. 10.
    Sterritt, R., Bustard, D.W.: Towards an Autonomic Computing Environment. In: 1st Int. Workshop Autonomic Computing Systems at DEXA’2003, Prague, pp. 694–698 (2003)Google Scholar
  11. 11.
    Bantz, D.F., Bisdikian, C., Challener, D., Karidis, J.P., Mastrianni, S., Mohindra, A., Shea, D.G., Vanover, M.: Autonomic personal computing. IBM Sys. J. 42(1), 165–176 (2003)CrossRefGoogle Scholar
  12. 12.
    Deen, G., Lehman, T., Kaufman, J.: The Almaden OptimalGrid Project. In: IEEE Proc. Autonomic Computing Workshop (5th AMS), Seattle, WA, June 2003, pp. 14–21 (2003)Google Scholar
  13. 13.
    Zaslavsky, A.: Mobile Agents: Can they assist with Context Awareness? In: Proc. 2004 IEEE Int. Conf. Mobile Data Management (2004)Google Scholar
  14. 14.
    IBM Systems Journal. Special issue on Autonomic Computing 42(1) (2003)Google Scholar
  15. 15.
    Norman, D.A., Ortony, A., Russell, D.M.: Affect and machine design: Lessons for the development of autonomous machines. IBM Sys. J. 42(1), 38–44 (2003)CrossRefGoogle Scholar
  16. 16.
    Anguita, D.: Smart Adaptive Systems: State of the Art and Future Direction of Research. EUNITE (December 2001)Google Scholar
  17. 17.
    Smirnov, M.: Area: Autonomic Communications. In: EU IST FET New Communication Paradigms for 2020 Consultation meeting (ver. 02), Brussels, Belgium (March 2004)Google Scholar
  18. 18.
    Mulvenna, M.D.: Annex: Comments and background material to topic 8 Behaviour knowledge and knowledge execution in Autonomic Communications. In: IST FET New Communication Paradigms for 2020 Consultation meeting, Brussels (March 2004)Google Scholar
  19. 19.
    Shardanand, U., Maes, P.: Social information filtering: Algorithms for automating word of mouth. Proc CHI 1995 Human Factors in Computing Systems, 210–217 (1995)Google Scholar
  20. 20.
    Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: An open architecture for collaborative filtering of netnews. In: Proc. ACM 1994 Conf Computer Supported Cooperative Work, pp. 175–186. ACM, Chapel Hill (1994)CrossRefGoogle Scholar
  21. 21.
    Heckerman, D., Geiger, D., Chickering, D.: Learning Bayesian networks The Combination of Knowledge and Statistical Data. Machine Learning 20, 197–243 (1995)zbMATHGoogle Scholar
  22. 22.
    Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Pren Hall, NJ (1998)Google Scholar
  23. 23.
    Mitchie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine Learning. Neural and Statistical Classification (1994),
  24. 24.
    Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules. In: Proc. of the 20th Int’l Conference on Very Large Databases, Santiago, Chile (September 1994)Google Scholar
  25. 25.
    Büchner, A.G., Baumgarten, M., Anand, S.S., Mulvenna, M.D., Hughes, J.G.: Navigation Pattern Discovery from Internet Data. In: Masand, B., Spiliopoulou, M. (eds.) WebKDD 1999. LNCS, vol. 1836. Springer, Heidelberg (2000)Google Scholar
  26. 26.
    Mobasher, M., Cooley, R., Srivastava, J.: Automatic Personalization Based On Web Usage Mining. Communication of ACM 43(8) (August 2000)Google Scholar
  27. 27.
    Mulvenna, M.D., Anand, S.S., Büchner, A.G.: Personalization on the Net using Web Mining. Comm. ACM Special Section 43(8), 122–125 (August 2000)Google Scholar
  28. 28.
    Büchner, A.G., Mulvenna, M.D.: Discovering Marketing Intelligence Through Online Analytical Web Usage Mining. ACM SIGMOD Record 27(4), 54–61 (1998)CrossRefGoogle Scholar
  29. 29.
  30. 30.
    Black, M., Hickey, R.: Learning classification rules for telecom customer call data under concept drift. Soft Comput. 8(2), 102–108 (2003)Google Scholar
  31. 31.
    Schilit, B., Adams, N., Want, R.R.: Context-Aware Computing Applications. In: Proc. IEEE Workshop on Mobile Computing Systems and Applications (1994)Google Scholar
  32. 32.
    Weiser, M.: The Computer for the 21st Century. Sci American 265(3), 94–104 (1991)CrossRefGoogle Scholar
  33. 33.
    Ark, W., Selker, T.: A Look at Human Interaction with Pervasive Computers. IBM Sys. J. 38(4), 504–507 (1999)CrossRefGoogle Scholar
  34. 34.
    Aarts, E., Collier, R.W., van Loenen, E., de Ruyter, B. (eds.): EUSAI 2003. LNCS, vol. 2875. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  35. 35.
    Mayrhofer, R., Radi, H., et al.: Recognizing and predicting context by learning from user behaviour. Austrian Computer Society, OCG (2003)Google Scholar
  36. 36.
    Dourish, P.: What we talk about when we talk about context. Personal and Ubiquitous Computing 8(1), 19–30 (2004)CrossRefGoogle Scholar
  37. 37.
    Garfinkel, H.: Studies in Ethnomethodology. Prentice-Hall, Englewood Cliffs (1967)Google Scholar
  38. 38.
    Bowling, A.: Measuring health: A review of quality of life measurement scales, 2nd edn. Open University Press, Philadelphia (1997)Google Scholar
  39. 39.
    Smirnov, M.: Managing Internet complexity in Autonomic Communication. In: presentation EU IST FET consultation meeting Communication Paradigms for 2020, Brussels (March 2004)Google Scholar
  40. 40.
    EU IST FET, New Communication Paradigms for 2020, Consultation meeting, Brussels, Belgium, March 3-4th (2004)Google Scholar
  41. 41.
    Sestini, F.: Situated and Autonomic Communications. In: EU IST FET New Communication Paradigms for 2020 Consultation meeting, Brussels (March 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Roy Sterritt
    • 1
  • Maurice Mulvenna
    • 1
  • Agnieszka Lawrynowicz
    • 2
  1. 1.School of Computing and MathematicsUniversity of Ulster at JordanstownCounty AntrimNorthern Ireland
  2. 2.Institute of Computing SciencePoznan University of TechnologyPoznanPoland

Personalised recommendations