Skip to main content

Cepstrum-Based Harmonics-to-Noise Ratio Measurement in Voiced Speech

  • Conference paper
Nonlinear Speech Modeling and Applications (NN 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3445))

Included in the following conference series:

Abstract

The estimation of the harmonics-to-noise ratio (HNR) in voiced speech provides an indication of the ratio between the periodic to aperiodic components of the signal. Time-domain methods for HNR estimation are problematic because of the difficulty of estimating the period markers for (pathological) voiced speech. Frequency-domain methods encounter the problem of estimating the noise level at harmonic locations. Cepstral techniques have been introduced to supply noise estimates at all frequency locations in the spectrum. A detailed description of cepstral processing is provided in order to motivate its use as a HNR estimator. The action of cepstral low-pass liftering and subsequent Fourier transformation is shown to be analogous to the action of a moving average filter. Based on this description, short-comings of two existing cepstral-based HNRs are illustrated and a new approach is introduced and shown to provide accurate HNR measurements for synthesised glottal and voiced speech waveforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yanaghihara, N.: Significance of harmonic changes and noise components in hoarseness. J. Speech Hear. Res. 10, 531–541 (1967)

    Google Scholar 

  2. Yumoto, E., Gould, W.J., Baer, T.: Harmonics-to-noise ratio as an index of the degree of hoarseness. J. Acoust. Soc. Am. 71, 1544–1549 (1982)

    Article  Google Scholar 

  3. Kasuya, Y.: An adaptive comb filtering method as applied to acoustic analysis of pathological voice, ICASSP Tokyo, pp. 669–672. IEEE, Los Alamitos (1986)

    Google Scholar 

  4. Kasuya, H., Ando, Y.: Analysis, synthesis and perception of breathy voice, in Vocal Fold Physiology. In: Gauffin, J., Hammarberg, B. (eds.) Acoustic, Perceptual and Physiologic Aspects of Voice Mechanisms, pp. 251–258. Singular Publishing Group, San Diego (1991)

    Google Scholar 

  5. Imaizumi, S.: Acoustic measurement of pathological voice qualities for medical purposes. In: ICASSP, Tokyo, pp. 677–680. IEEE, Los Alamitos (1986)

    Google Scholar 

  6. Klatt, D., Klatt, L.: Analysis, synthesis, and perception of voice quality variations among female and male talkers. J. Acoust. Soc. Amer. 87, 820–857 (1990)

    Article  Google Scholar 

  7. Hillenbrand, J., Cleveland, R.A., Erickson, R.L.: Acoustical correlates of breathy vocal quality. J. Speech Hear. Res. 37, 769–778 (1994)

    Google Scholar 

  8. Qi, Y.: Time normalization in voice analysis. J. Acoust. Soc. Am.1992, 1569–1576 (1992)

    Google Scholar 

  9. Ladefoged, P., Antonanzas-Barroso, N.: Computer measures of breathy voice quality. UCLA Working Papers in Phonetics 61, 79–86 (1985)

    Google Scholar 

  10. Kitajima, K.: Quantitative evaluation of the noise level in the pathologic voice. Folia Phoniatr 3, 145–148 (1981)

    Google Scholar 

  11. Klingholtz, M., Martin, F.: Quantitative spectral evaluation of shimmer and jitter. J. Speech Hear. Res. 28, 169–174 (1985)

    Google Scholar 

  12. Kasuya, H., Ogawa, S., Mashima, K., Ebihara, S.: Normalized noise energy as an acoustic measure to evaluate pathologic voice. J. Acoust. Soc. Am. 80, 1329–1334 (1986)

    Article  Google Scholar 

  13. Kasuya, H., Endo, Y.: Acoustic analysis, conversion, and synthesisof the pathological voice, in Vocal Fold Physiology. In: Fujimura, O., Hirano, M. (eds.) Voice Quality Control, pp. 305–320. Singular PublishingGroup, San Diego (1995)

    Google Scholar 

  14. Kojima, H., Gould, W.J., Lambiase, A., Isshiki, N.: Computer analysis of hoarseness, Acta Oto-Laryngol. Acta Oto-Laryngol 89, 547–554 (1980)

    Article  Google Scholar 

  15. Muta, H., Baer, T., Wagatsuma, K., Muraoka, T., Fukuda, H.: A pitch synchronous analysis of hoarseness in running speech. J. Acoust. Soc. Am. 84, 1292–1301 (1998)

    Article  Google Scholar 

  16. Hiraoka, N., Kitazoe, Y., Ueta, H., Tanaka, S., Tanabe, M.: Harmonic intensity analysis of normal and hoarse voices. J. Acoust. Soc. Am. 76, 1648–1651 (1984)

    Article  Google Scholar 

  17. Qi, Y., Weinberg, B., Bi, N., Hess, W.J.: Minimizing the effect of period determination on the computation of amplitude perturbation in voice. J. Acoust. Soc. Am. 97, 2525–2532 (1995)

    Article  Google Scholar 

  18. Michaelis, D., Gramss, T., Strube, H.W.: Glottal to noise excitation ratio-a new measure for describing pathological voices. Acust. Acta Acust. 83, 700–706 (1997)

    Google Scholar 

  19. Murphy, P.J.: Perturbation-free measurement of the harmonics-to-noise ratio in speech signals using pitch-synchronous harmonic analysis. J. Acoust. Soc. Amer. 105(5), 2866–2881 (1999)

    Article  MathSciNet  Google Scholar 

  20. Manfredi, C., Iadanza, E., Dori, F., Dubini, S.: Hoarse voice denoising for real-time DSP implementation: continuous speech assessment, Models and analysis of vocal emissions for biomedical applications:3rd International workshop, Firenze Italy (2003)

    Google Scholar 

  21. de Krom, G.: A cepstrum based technique for determining a harmonics-to-noise ratio in speech signals. J. Speech Hear. Res. 36(2), 254–266 (1993)

    Google Scholar 

  22. Qi, Y., Hillman, R.E.: Temporal and spectral estimations of harmonics-to-noise ratio in human voice signals. J. Acoust. Soc. Amer. 102(1), 537–543 (1997)

    Article  Google Scholar 

  23. Murphy, P.J.: A cepstrum-based harmonics-to-noise ratio in voice signals. In: Proceedings International Conference on Spoken Language Processing, Beijing, China, pp. 672–675 (2000)

    Google Scholar 

  24. Noll, A.M.: Cepstrum pitch determination. J. Acoust. Soc. Am. 41, 293–309 (1967)

    Article  Google Scholar 

  25. Oppenheim, A.V., Schafer, R.W.: Homomorphic analysis of speech. IEEE Trans. Audio Electroacoust AU-16, 221–226 (1968)

    Article  Google Scholar 

  26. Oppenheim, A.V.: Speech analysis-synthesis system based on homomorphic filtering. J. Acoust. Soc. Amer. 45, 459–462 (1969)

    Google Scholar 

  27. Schafer, R.W., Rabiner, L.R.: System for automatic analysis of voiced speech. J. Acoust. Soc. Amer. 47(2), 634–648 (1970)

    Article  Google Scholar 

  28. Murphy, P.J.: Averaged modified periodogram analysis of aperiodic voice signals. In: Proceedings Irish Signals and Systems Conference, Dublin, pp. 266–271 (2000)

    Google Scholar 

  29. Fant, G., Liljencrants, J., Lin, Q.G.: A four parameter model of glottal flow. STLQPSR 4, 1–12 (1985)

    Google Scholar 

  30. Childers, D.G.: Speech processing and synthesis toolboxes. John Wiley & Sons, Inc., New York (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Murphy, P., Akande, O. (2005). Cepstrum-Based Harmonics-to-Noise Ratio Measurement in Voiced Speech. In: Chollet, G., Esposito, A., Faundez-Zanuy, M., Marinaro, M. (eds) Nonlinear Speech Modeling and Applications. NN 2004. Lecture Notes in Computer Science(), vol 3445. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11520153_9

Download citation

  • DOI: https://doi.org/10.1007/11520153_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27441-4

  • Online ISBN: 978-3-540-31886-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics