Skip to main content

The Quorum Deployment Problem

  • Conference paper
  • First Online:
Principles of Distributed Systems (OPODIS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3544))

Included in the following conference series:

Abstract

Quorum systems are commonly used to maintain the consistency of replicated data in a distributed system. Much research has been devoted to developing quorum systems with good theoretical properties, such as fault tolerance and high availability. However, even given a theoretically good quorum system, it is not obvious how to efficiently deploy such a system in a real network. This paper introduces a new combinatorial optimization problem, the Quorum Deployment Problem, and studies its complexity. We demonstrate that it is NP-hard to approximate the Quorum Deployment Problem within any factor of n δ, where n is the number of nodes in the distributed network and δ > 0. The problem is NP-hard in even the simplest possible distributed network: a one-dimensional line with metric cost. We begin to study algorithms for variants of the problem. Some variants can be solved optimally in polynomial time and some NP-hard variants can be approximated to within a constant factor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gifford, D.K.: Weighted voting for replicated data. In: Proceedings of the seventh symposium on operating systems principles, pp. 150–162 (1979)

    Google Scholar 

  2. Thomas, R.H.: A majority consensus approach to concurrency control for multiple copy databases. Transactions on Database Systems 4, 180–209 (1979)

    Article  Google Scholar 

  3. Garcia-Molina, H., Barbara, D.: How to assign votes in a distributed system. Journal of the ACM 32, 841–860 (1985)

    Article  MathSciNet  Google Scholar 

  4. Herlihy, M.: A quorum-consensus replication method for abstract data types. ACM Transactions on Computer Systems 4, 32–53 (1986)

    Article  Google Scholar 

  5. Agrawal, D., Abbadi, A.E.: Resilient logical structures for efficient management of replicated data. Technical report, University of California Santa Barbara (1992)

    Google Scholar 

  6. Bearden, M., Bianchini Jr, R.P.: A fault-tolerant algorithm for decentralized on-line quorum adaptation. In: Proceedings of the 28th International Symposium on Fault-Tolerant Computing Systems, Munich, Germany (1998)

    Google Scholar 

  7. El Abbadi, A., Toueg, S.: Maintaining availability in partitioned replicated databases. Transactions on Database Systems 14, 264–290 (1989)

    Article  MathSciNet  Google Scholar 

  8. El Abbadi, A., Skeen, D., Cristian, F.: An efficient fault-tolerant protocol for replicated data management. In: Proc. of the 4th Symp. on Principles of Databases, pp. 215–228. ACM Press, New York (1985)

    Google Scholar 

  9. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing systems. Journal of the ACM 42, 124–142 (1995)

    Article  Google Scholar 

  10. Lynch, N., Shvartsman., A.: RAMBO: A reconfigurable atomic memory service for dynamic networks. In: Proc. of the 16th Intl. Symp. on Distributed Computing, pp. 173–190 (2002)

    Google Scholar 

  11. Gilbert, S., Lynch, N., Shvartsman, A.: RAMBO II: Rapidly reconfigurable atomic memory for dynamic networks. In: Proc. of the Intl. Conference on Dependable Systems and Networks, pp. 259–269 (2003)

    Google Scholar 

  12. Maekawa, M.: A \(\sqrt{N}\) algorithm for mutual exclusion in decentralized systems. ACM Tranactions on Computer Systems 3, 145–159 (1985)

    Article  Google Scholar 

  13. Naor, M., Wieder, U.: Access control and signatures via quorum secret sharing. IEEE Transactions on Parallel and Distributed Systems 9, 909–922 (1998)

    Article  Google Scholar 

  14. Upfal, E., Wigderson, A.: How to share memory in a distributed system. Journal of the ACM 34, 116–127 (1987)

    Article  MathSciNet  Google Scholar 

  15. Vitányi, P.M.B., Awerbuch, B.: Atomic shared register access by asynchronous hardware. In: Proceedings 27th Annual IEEE Symposium on Foundations of Computer Science, pp. 233–243. IEEE, New York (1986)

    Google Scholar 

  16. Cheung, S.Y., Ammar, M.H., Ahamad, M.: The grid protocol: A high performance scheme for maintaining replicated data. Knowledge and Data Engineering 4, 582–592 (1992)

    Article  Google Scholar 

  17. Peleg, D., Wool, A.: Crumbling walls: a class of high availability quorum systems. In: Proceedings of the 14th ACM Symposium on Principles of Distributed Computing, pp. 120–129 (1995)

    Google Scholar 

  18. Malkhi, D., Reiter, M.: Byzantine quorum systems. In: Proceedings of the 29th Symposium on Theory of Computing, pp. 569–578 (1997)

    Google Scholar 

  19. Naor, M., Wool, A.: The load, capacity, and availability of quorums systems. SIAM Journal on Computing 27, 423–447 (1998)

    Article  MathSciNet  Google Scholar 

  20. Naor, M., Wieder, U.: Scalable and dynamic quorum systems. In: Twenty-Second ACM Symposium on Principles of Distributed Computing (2003)

    Google Scholar 

  21. Tsuchiya, T., Yamaguchi, M., Kikun, T.: Minimizing the maximum delay for reaching consensus in quorum-based mutual exclusion schemes. IEEE Transactions on Parallel and Distributed Systems 10, 337–345 (1999)

    Article  Google Scholar 

  22. Fu, A.W.: Delay-optimal quorum consensus for distributed systems. IEEE Transactions on Parallel and Distributed Systems 8, 59–69 (1997)

    Article  Google Scholar 

  23. Schrijver, A.: 17. In: Combinatorial Optimization, vol. A, Springer, Heidelberg (2003)

    MATH  Google Scholar 

  24. Gary, M.R., Johnson, D.S.: Computers and Intractability. Freeman, New York (1979)

    Google Scholar 

  25. Peeters, R.: The maximum edge biclique problem is NP-complete. Discrete Applied Mathematics 131, 651–654 (2003)

    Article  MathSciNet  Google Scholar 

  26. Gilbert, S., Malewicz, G.: The quorum deployment problem. Technical Report CSAIL-TR-972, MIT (2004)

    Google Scholar 

  27. Queyranne, M.: Performance ratio of polynomial heuristics for triangle inequality quadratic assignment problems. Operations Research Letters 4, 231–234 (1986)

    Article  MathSciNet  Google Scholar 

  28. Krumke, S.O., Marathe, M.V., Noltemeier, H., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J.: Compact location problems. Theoretical Computer Science 181, 379–404 (1997)

    Article  MathSciNet  Google Scholar 

  29. Tokuyama, T., Nakano, J.: Geometric algorithms for the minimum cost assignment problem. Random Structures and Algorithms 6, 393–406 (1995)

    Article  MathSciNet  Google Scholar 

  30. Guttmann-Beck, N., Hassin, R.: Approximation algorithms for min-sum p-clustering. Discrete Applied Mathematics 89, 125–142 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gilbert, S., Malewicz, G. (2005). The Quorum Deployment Problem. In: Higashino, T. (eds) Principles of Distributed Systems. OPODIS 2004. Lecture Notes in Computer Science, vol 3544. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11516798_23

Download citation

  • DOI: https://doi.org/10.1007/11516798_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-27324-0

  • Online ISBN: 978-3-540-31584-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics