Using Schema Transformation Pathways for Data Lineage Tracing

  • Hao Fan
  • Alexandra Poulovassilis
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3567)


With the increasing amount and diversity of information available on the Internet, there has been a huge growth in information systems that need to integrate data from distributed, heterogeneous data sources. Tracing the lineage of the integrated data is one of the problems being addressed in data warehousing research. This paper presents a data lineage tracing approach based on schema transformation pathways. Our approach is not limited to one specific data model or query language, and would be useful in any data transformation/integration framework based on sequences of primitive schema transformations.


Query Language Data Warehousing Lineage Data Virtual View Transformation Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert, J.: Algebraic properties of bag data types. In: Proc. VLDB 1991, pp. 211–219. Morgan Kaufmann, San Francisco (1991)Google Scholar
  2. 2.
    Bernstein, P.A., Bergstraesser, T.: Meta-data support for data transformations using Microsoft repository. IEEE Data Engineering Bulletin 22(1), 9–14 (1999)Google Scholar
  3. 3.
    Boyd, M., Kittivoravitkul, S., Lazanitis, C.: AutoMed: A BAV data integration system for heterogeneous data sources. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 82–97. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Buneman, P., Khanna, S., Tan, W.C.: Why and Where: A characterization of data provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 316–330. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Buneman, P., et al.: Comprehension syntax. SIGMOD Record 23(1), 87–96 (1994)CrossRefGoogle Scholar
  6. 6.
    Cui, Y., Widom, J.: Practical lineage tracing in data warehouses. In: Proc. ICDE 2000, pp. 367–378. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  7. 7.
    Cui, Y., Widom, J.: Lineage tracing for general data warehouse transformations. In: Proc.VLDB 2001, pp. 471–480. Morgan Kaufmann, San Francisco (2001)Google Scholar
  8. 8.
    Cui, Y., Widom, J., Wiener, J.L.: Tracing the lineage of view data in a warehousing environment. ACM Transactions on Database Systems (TODS) 25(2), 179–227 (2000)CrossRefGoogle Scholar
  9. 9.
    Faloutsos, C., Jagadish, H.V., Sidiropoulos, N.D.: Recovering information from summary data. In: Proc. VLDB 1997, pp. 36–45. Morgan Kaufmann, San Francisco (1997)Google Scholar
  10. 10.
    Fan, H., Poulovassilis, A.: Tracing data lineage using schema transformation pathways. In: Knowledge Transformation for the Semantic Web. Frontiers in Artificial Intelligence and Application, vol. 95, pp. 64–79. IOS Press, Amsterdam (2003)Google Scholar
  11. 11.
    Fan, H., Poulovassilis, A.: Using AutoMed metadata in data warehousing environments. In: Proc. DOLAP 2003, pp. 86–93. ACM Press, New York (2003)CrossRefGoogle Scholar
  12. 12.
    Fan, H., Poulovassilis, A.: Schema evolution in data warehousing environments – a schema transformation-based approach. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 639–653. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. 13.
    Galhardas, H., Florescu, D., Shasha, D., Simon, E., Saita, C.A.: Improving data cleaning quality using a data lineage facility. In: Proc. DMDW 2001, p. 3 (2001)Google Scholar
  14. 14.
    Jasper, E., Poulovassilis, A., Zamboulis, L.: Processing IQL queries and migrating data in the AutoMed toolkit. Technical Report 20, Automed Project (2003)Google Scholar
  15. 15.
    McBrien, P., Poulovassilis, A.: A uniform approach to inter-model transformations. In: Jarke, M., Oberweis, A. (eds.) CAiSE 1999. LNCS, vol. 1626, pp. 333–348. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  16. 16.
    McBrien, P., Poulovassilis, A.: Defining peer-to-peer data integration using both as view rules. In: Proc. DBISP2P, September 7-8. LNCS, Springer, Berlin (2003)Google Scholar
  17. 17.
    Poulovassilis, A.: A Tutorial on the IQL Query Language. Technical Report 28, Automed Project (2004)Google Scholar
  18. 18.
    Woodruff, A., Stonebraker, M.: Supporting fine-grained data lineage in a database visualization environment. In: Proc. ACDE 1997, pp. 91–102. IEEE Computer Society, Los Alamitos (1997)Google Scholar
  19. 19.
    Zamboulis, L.: XML data integration by graph restrucring. In: Williams, H., MacKinnon, L.M. (eds.) BNCOD 2004. LNCS, vol. 3112, pp. 57–71. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Zamboulis, L., Poulovassilis, A.: Using automed for xml data transformation and integration. In: DIWeb. LNCS, vol. 3084, pp. 58–69. Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Hao Fan
    • 1
  • Alexandra Poulovassilis
    • 1
  1. 1.School of Computer Science and Information SystemsBirkbeck College, University of LondonLondon

Personalised recommendations