Skip to main content

Feature Selection Method Using Preferences Aggregation

  • Conference paper
Book cover Machine Learning and Data Mining in Pattern Recognition (MLDM 2005)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3587))

Abstract

The feature selection allows to choose P features among M (P<M) and thus to reduce the representation space of data. This process is increasingly useful because of the databases size increase. Therefore we propose a method based on preferences aggregation. It is an hybrid method between filter and wrapper approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almuallim, H., Dietterich, T.G.: Learning with many irrelevant features. In: Proceedings of the Ninth National Conference on Artificial Intelligence, pp. 547–552. AAAI Press, Menlo Park (1991)

    Google Scholar 

  2. Almuallim, H., Dietterich, T.G.: Efficient algorithms for identifying relevant features. In: Proc. of the 9th Canadian Conference on Artificial Intelligence, pp. 38–45. Vancouver, BC (1992)

    Google Scholar 

  3. Battiti, R.: Using mutual information for selecting features in supervised neural net learning. IEEE Trans. on Neural Networks 5, 537–550 (1994)

    Article  Google Scholar 

  4. Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases, Irvine, CA. University of California, Department of Information and Computer Science (1998), ftp://ftp.ics.uci.edu/pub/machine-learning-databases/

  5. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning. Artificial Intelligence, 245–271 (1997)

    Google Scholar 

  6. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression trees. The Wadsworth Statistics/Probability Series. Wadsworth, Belmont (1984)

    MATH  Google Scholar 

  7. De Mantaras, R.L.: A distance-based attribute selection measure for decision tree induction. Machine Learning 6, 81–92 (1991)

    Article  Google Scholar 

  8. Hall, M.: Correlation-based feature selection of discrete and numeric class machine learning. In: Proceedings of the International Conference on Machine Learning, pp. 359–366. Morgan Kaufmann Publishers, San Francisco (2000)

    Google Scholar 

  9. Hart, A.: Experience in the use of an inductive system in knowledge eng. In: Bramer, M. (ed.) Research and Development in Expert Systems. Cambridge Univ. Press, Cambridge (1984)

    Google Scholar 

  10. John, G.H., Kohavi, R., Pfleger, K.: Irrelevant Features and the Subset Selection Problem. In: Proc. of the 11th International Conference on Machine Learning ICML 1994, pp. 121–129 (1994)

    Google Scholar 

  11. Jun, B.H., Kim, C.S., Song, H.Y., Kim, J.: A New Criterion in Selection and Discretization of Attributes for the Generation of Decision Trees. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 19(12), 1371–1375 (1997)

    Article  Google Scholar 

  12. Kira, K., Rendell, L.A.: The feature selection problem: Traditional methods and a new algorithm. In: Tenth National Conference on Artificial Intelligence, pp. 129–134. MIT Press, Cambridge (1992)

    Google Scholar 

  13. Kira, K., Rendell, L.: A practical approach to feature selection. In: Proceedings of the Tenth International Conference on Machine Learning, Amherst, Massachusetts. Morgan Kaufmann, San Francisco (1992)

    Google Scholar 

  14. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  15. Kononenko, I.: Estimating attributes: analysis and extensions of Relief. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171–182. Springer, Heidelberg (1994)

    Google Scholar 

  16. Lallich, S., Rakotomalala, R.: Fast feature selection using partial correlation for multivalued attributes. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 221–231. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  17. Langley, P., Sage, S.: Oblivious decision trees and abstract cases. In: Working Notes of the AAAI 1994 Workshop on Case-Based Reasoning (1994) (in press)

    Google Scholar 

  18. Liu, H., Setiono, R.: Chi2: Feature selection and discretization of numeric attributes. In: Proceedings of 7th IEEE Int’l. Conference on Tools with Artificial Intelligence (1995)

    Google Scholar 

  19. Liu, H., Setiono, R.: A probabilistic approach to feature selection-a filter solution. In: Proceedingof International Conference on Machine Learning, pp.  319–327 (1996)

    Google Scholar 

  20. Liu, H., Motoda, H., Dash, M.: A monotonic measure for optimal feature selection. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 101–106. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  21. Liu, H., Motoda, H.: Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic, Dordrecht (1998)

    MATH  Google Scholar 

  22. Marcotorchino, J.-F., Michaud, P.: Heuristic approach to the similarity aggregation problem. Methods of Operations Research 43, 395–404 (1981)

    MATH  Google Scholar 

  23. Marcotorchino, J.-F.: Agrégation de similarités en classification automatique, thèse de Doctorat d’Etat, Université Paris 6 (1981)

    Google Scholar 

  24. Michaud, P.: Agrégation à la majorité 1: Hommage à Condorcet, Rapport du Centre Scientifique IBM-France, N°F-051 (1982)

    Google Scholar 

  25. Mingers, J.: Expert systems — rule induction with statistical data. Journal of the Operational Research Society 38, 39–47 (1987)

    Google Scholar 

  26. Modrzejewski, M.: Feature Selection Using Rough Sets Theory. In: Brazdil, P.B. (ed.) ECML 1993. LNCS, vol. 667, pp. 213–226. Springer, Heidelberg (1993)

    Google Scholar 

  27. Narendra, P.M., Fukunaga, K.: A Branch and Bound algorithm for feature subset selection. IEEE Transactions Computers C-26, 917 (1977)

    Article  MATH  Google Scholar 

  28. Nicoloyannis, N., Terrenoire, M., Tounissoux, D.: An optimisation model for aggregationg preferences: A simulated annealing approach. Health and System Science 2(1-2), 33–44 (1998)

    Google Scholar 

  29. Nicoloyannis, N., Terrenoire, M., Tounissoux, D.: Pertinence d’une classification. Revue Electronique sur l’Apprentissage par les Données 3(1), 39–49 (1999)

    Google Scholar 

  30. Quinlan, J.: Introduction of Decision Trees. Machine Learning 1, 81–106 (1986)

    Google Scholar 

  31. Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423, 623–656 (1948)

    MATH  MathSciNet  Google Scholar 

  32. Sheinvald, J., Dom, B., Niblack, W.: A modelling approach to feature selection. In: Proceedings of Tenth International Conference on Pattern Recognition, vol. 1, pp. 535–539 (1990)

    Google Scholar 

  33. Zhou, X., Dillon, T.S.: A Statistical–Heuristic Feature Selection Criterion for Decision Tree Induction. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(8), 834–841 (1991)

    Article  Google Scholar 

  34. Zighed, D.A., Rakotomalala, R., Rabaséda, S.: A discretization method of continous attributes in induction graphs. In: Proc. of the 13th European Meetings on Cybernetics and System Research, pp. 997–1002 (1996)

    Google Scholar 

  35. Erray, W.: WF: Une méthode de sélection de variables combinant une méthode filter rapide et une approche enveloppe. In: 11èmes Rencontres de la Société Francophone de Classification (SFC 2004), Bordeaux, Septembre (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Legrand, G., Nicoloyannis, N. (2005). Feature Selection Method Using Preferences Aggregation. In: Perner, P., Imiya, A. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2005. Lecture Notes in Computer Science(), vol 3587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11510888_21

Download citation

  • DOI: https://doi.org/10.1007/11510888_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26923-6

  • Online ISBN: 978-3-540-31891-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics