Skip to main content

Probabilistic Escrow of Financial Transactions with Cumulative Threshold Disclosure

  • Conference paper
Financial Cryptography and Data Security (FC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 3570))

Included in the following conference series:

Abstract

We propose a scheme for privacy-preserving escrow of financial transactions. The objective of the scheme is to preserve privacy and anonymity of the individual user engaging in financial transactions until the cumulative amount of all transactions in a certain category, for example all transactions with a particular counterparty in any single month, reaches a pre-specified threshold. When the threshold is reached, the escrow agency automatically gains the ability to decrypt the escrows of all transactions in that category (and only that category).

Our scheme employs the probabilistic polling idea of Jarecki and Odlyzko [JO97], amended by a novel robustness mechanism which makes such scheme secure for malicious parties. When submitting the escrow of a transaction, with probability that is proportional to the amount of the transaction, the user reveals a share of the key under which all his transactions are encrypted. Therefore, the fraction of shares that are known to the escrow agency is an accurate approximation of the fraction of the threshold amount that has been transacted so far. When the threshold is reached, with high probability the escrow agency possesses all the shares that it needs to reconstruct the key and open the escrows. Our main technical contribution is a novel tool of robust probabilistic information transfer, which we implement using techniques of optimistic fair 2-party computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asokan, N., Schoup, V., Waidner, M.: Optimistic fair exchange of digital signatures. IEEE Journal on Selected Areas in Communications 18, 593–610 (2000)

    Article  Google Scholar 

  2. Blum, M.: Coin flipping by phone. In: Proc. 24th IEEE Computer Conference (CompCon), vol. 15(1), pp. 93–118 (1982)

    Google Scholar 

  3. Canetti, R.: Security and composition of multiparty cryptographic protocols. Journal of Cryptology 13(1), 143–202 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cachin, C., Camenisch, J.: Optimistic fair secure computation. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 93–111. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Chaum, D., Pedersen, T.: Wallet databases with observers. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer, Heidelberg (1993)

    Google Scholar 

  7. Camenisch, J.L., Shoup, V.: Practical verifiable encryption and decryption of discrete logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Feldman, P.: A practical scheme for non-interactive verifiable secret sharing. In: Proc. FOCS 1987, pp. 427–438 (1987)

    Google Scholar 

  9. Jarecki, S., Odlyzko, A.: An efficient micropayment scheme based on probabilistic polling. In: Proc. Financial Cryptography 1997, pp. 173–192 (1997)

    Google Scholar 

  10. Jarecki, S., Shmatikov, V.: Handcuffing Big Brother: an abuse-resilient transaction escrow scheme. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 590–608. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  11. Naor, M., Pinkas, B.: Secure and efficient metering. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 576–590. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Yao, A.: Protocols for secure computations. In: Proc. FOCS 1982 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jarecki, S., Shmatikov, V. (2005). Probabilistic Escrow of Financial Transactions with Cumulative Threshold Disclosure. In: Patrick, A.S., Yung, M. (eds) Financial Cryptography and Data Security. FC 2005. Lecture Notes in Computer Science, vol 3570. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11507840_17

Download citation

  • DOI: https://doi.org/10.1007/11507840_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26656-3

  • Online ISBN: 978-3-540-31680-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics