Advertisement

Dynamic Group Key Agreement in Tree-Based Setting

(Extended Abstract)
  • Ratna Dutta
  • Rana Barua
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3574)

Abstract

We present a provably secure tree based authenticated group key agreement protocol in dynamic scenario. Bilinear pairing and multi-signature are at the heart of our protocol. We prove that our protocol is provably secure in the standard security model of Bresson et al. An appropriate modification of Katz-Yung approach to tree based setting is adopted while proving its security against active adversaries. The protocol has an in-built hierarchical structure that makes it desirable for certain applications.

Keywords

Leaf Node Query Model User Instance Passive Adversary Event Forge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barreto, P.S.L.M., Kim, H.Y., Scott, M.: Efficient algorithms for pairingbased cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Barua, R., Dutta, R., Sarkar, P.: Extending Joux Protocol to MultiParty Key Agreement. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 205–217. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Lynn, B., Shacham, H.: Short Signature from Weil Pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Boldyreva, A.: Threshold Signatures, Multisignatures and Blind Signatures Based on the Gap-Diffie-Hellman-Group Signature Scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Bresson, E., Chevassut, O., Pointcheval, D.: Dynamic Group Diffie-Hellman Key Exchange under Standard Assumptions. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 321–336. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Dutta, R., Barua, R., Sarkar, P.: Provably Secure Authenticated Tree Based Group Key Agreement. In: López, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 92–104. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Dutta, R., Barua, R.: Dynamic Group Key Agreement in Tree-Based setting, Available at http://www.cse.iitk.ac.in/users/iriss05/r_dutta.pdf
  8. 8.
    Joux, A.: A One Round Protocol for Tripartite Diffie-Hellman. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Katz, J., Yung, M.: Scalable Protocols for Authenticated Group Key Exchange. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Kim, Y., Perrig, A., Tsudik, G.: Tree based Group Key Agreement, Available at http://eprint.iacr.org/2002/009
  11. 11.
    Kim, H.J., Lee, S.M., Lee, D.H.: Constant-Round Authenticated Group Key Exchange for Dynamic Groups. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 245–259. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Ratna Dutta
    • 1
  • Rana Barua
    • 1
  1. 1.Indian Statistical Institute 

Personalised recommendations