New Cryptographic Applications of Boolean Function Equivalence Classes

  • William L. Millan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3574)


In this paper we investigate several issues for equivalence classes of Boolean functions which are interesting for cryptology. As well as reviewing the established concepts, we present three new applications of these ideas. Firstly we propose a novel yet natural extension to the existing transform based equivalence class distinguishing algorithm, which can provide improved performance. Secondly, making novel use of the class graph notion, we completely explain the required conditions for high nonlinearity in the concatenation construction of Boolean functions. Finally, we use the linear class graph to comment on algebraic attacks by defining all the equivalence classes possible for the important set of annihilating functions. This approach provides a new solution to the problem of finding (and avoiding) low degree annihilators.


Equivalence Class Boolean Function Block Cipher Stream Cipher Class Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, C.M.: On Immunity Against Biham and Shamir’s Diferential Cryptanalysis. Information Processing Letters 41, 77–80 (1992)zbMATHCrossRefGoogle Scholar
  2. 2.
    Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita, T.: Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms - Design and Analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 39–56. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Armknecht, F., Krause, M.: Algebraic Attacks on Combiners with Memory. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 162–175. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Berlekamp, E.R., Welch, L.R.: Weight distributions of the cosets of the (32,6) Reed-Muller code. IEEE Transactions on Inform. Theory IT-18(1), 203–207 (1972)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Canteaut, A., Carlet, C., Charpin, P., Fontaine, C.: On Cryptographic Properties of Cosets of R(1, m). IEEE Trans. Inform. Theory 47(4), 1494–1513 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Canteaut, A., Charpin, P.: Decomposing Bent Functions. IEEE Trans. Inform. Theory 49(8), 2004–2019 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Carlet, C.: On the coset weight divisibility and nonlinearity of resilient and correlation immune functions. In: Proceedings of Sequences and Their Applications - SETA 2001. Discrete Mathematics and Theoretical Computer Science, pp. 131–144. Springer, Heidelberg (2001)Google Scholar
  8. 8.
    Carlet, C., Sarkar, P.: Spectral Domain Analysis of Correlation Immune and Resilient Boolean Functions. Finite Fields and Applications 8(1), 120–130 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Courtois, C., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Systems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  11. 11.
    Dobbertin, H.: Construction of Bent Functions and Balanced Boolean functions with High Nonlinearity. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 61–74. Springer, Heidelberg (1995)Google Scholar
  12. 12.
    Fuller, J., Millan, W.: Linear Redundancy in S-boxes. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 74–86. Springer, Heidelberg (2003); A preliminary version appears as On Linear Redundancy in the AES S-box, available at IACR e-print archive 111/2002CrossRefGoogle Scholar
  13. 13.
    Fuller, J., Millan, W., Dawson, E.: Evolutionary Generation of Bent Functions for Cryptology. In: Proceedings of CEC 2003, pp. 1655–1661. IEEE, Los Alamitos (2003)Google Scholar
  14. 14.
    Meier, W., Staffelbach, O.: Nolinearity Criteria for Cryptographic Functions. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp. 549–562. Springer, Heidelberg (1990)Google Scholar
  15. 15.
    Meier, W., Pasalic, E., Carlet, C.: Algebraic Attacks and Decomposition of Boolean Functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 474–491. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Millan, W., Fuller, J., Dawson, E.: New Concepts in Evolutionary Search for Boolean Functions in Cryptography. In: Proceedings of CEC 2003, pp. 2157–2164. IEEE, Los Alamitos (2003)Google Scholar
  17. 17.
    Patterson, N.J., Wiedemann, D.H.: Correction to - the covering radius of the (215,16) Reed-Muller code is at least 16276. IEEE Trans. Inform. Theory 36, 443 (1990)MathSciNetGoogle Scholar
  18. 18.
    Preneel, B., et al.: Propagation Characteristics of Boolean Functions. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 161–173. Springer, Heidelberg (1991)Google Scholar
  19. 19.
    Rothaus, O.S.: On Bent Functions. Journal of Combinatorial Theory, Series A 20, 300–305 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Siegenthaler, T.: Correlation immunity of nonlinear combining functions for cryptographic applications. IEEE Trans on IT, IR 30(5), 776–780 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Siegenthaler, T.: Decrypting a Class of Stream Ciphers using Ciphertext only. IEEE Trans on Computers C-34(1), 81–85 (1985)CrossRefGoogle Scholar
  22. 22.
    Tarannikov, Y.: On Resilient Boolean Functions with Maximum Possible Nonlinearity. In: Roy, B., Okamoto, E. (eds.) INDOCRYPT 2000. LNCS, vol. 1977, pp. 19–30. Springer, Heidelberg (2000); Originally available as IACR eprint 2000/005 from Google Scholar
  23. 23.
    Webster, A.F., Tavares, S.: On the design of S-boxes. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 523–534. Springer, Heidelberg (1986)Google Scholar
  24. 24.
    Xiao, G.-Z., Massey, J.L.: A Spectral Characterisation of Correlation Immune Combining Functions. IEEE Trans. IT 34(3), 569–571 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Zheng, Y., Zhang, X.M.: Improved Upper Bound on the Nonlinearity of High Order Correlation Immune Functions. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 264–274. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  26. 26.
    Zheng, Y., Zhang, X.M.: On Relationship Among Avalanche, Nonlinearity and Propagation Criteria. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 470–483. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • William L. Millan
    • 1
  1. 1.ISI, QUTBrisbaneAustralia

Personalised recommendations