Advertisement

Cryptanalysis of Two Variants of PCBC Mode When Used for Message Integrity

  • Chris J. Mitchell
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3574)

Abstract

The PCBC block cipher mode of operation has many variants, of which one, due to Meyer and Matyas, dates back over 20 years. Whilst a particularly simple variant of PCBC has long been known to be very weak when used for data integrity protection, the Meyer-Matyas variant has not previously been attacked. In this paper we cryptanalyse this mode, and show that it possesses a serious weakness when used for data integrity protection. Specifically, we show how to construct an existential forgery using only a single known ciphertext message and a modest amount of known plaintext (this could be as little as three plaintext blocks). We also describe a ciphertext-only existential forgery attack against another, recently proposed, PCBC-variant called M-PCBC.

Keywords

Block Cipher Encrypt Message Plaintext Attack Encryption Mode Message Integrity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)zbMATHGoogle Scholar
  2. 2.
    Bellare, M., Kohno, T., Namprempre, C.: Breaking and provably repairing the SSH authenticated encryption scheme: A case study of the encode-then-encrypt and- MAC paradigm. ACM Transactions on Information and System Security 7, 206–241 (2004)CrossRefGoogle Scholar
  3. 3.
    Black, J., Urtubia, H.: Side-channel attacks on symmetric encryption schemes: The case for authenticated encryption. In: Proceedings of the 11th USENIX Security Symposium, San Francisco, CA, USA, August 5-9, pp. 327–338. USENIX (2002)Google Scholar
  4. 4.
    Canvel, B., Hiltgen, A., Vaudenay, S., Vuagnoux, M.: Password interception in a SSL/TLS channel. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 583–599. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Paterson, K.G., Yau, A.: Padding oracle attacks on the ISO CBC mode padding standard. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 305–323. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Vaudenay, S.: Security flaws induced by CBC padding — Applications to SSL, IPSEC,WTLS. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 534–545. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Rogaway, P., Bellare, M., Black, J.: OCB: A block-cipher mode of operation for efficient authenticated encryption. ACM Transactions on Information and System Security 6, 365–403 (2003)CrossRefGoogle Scholar
  8. 8.
    Bellare, M., Rogaway, P., Wagner, D.: The EAX mode of operation. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    National Institute of Standards and Technology (NIST): NIST Special Publication 800-38C, Draft Recommendation for Block Cipher Modes of Operation: The CCM Mode For Authentication and Confidentiality (2003)Google Scholar
  10. 10.
    Whiting, D., Housley, R., Ferguson, N.: RFC 3610, Counter with CBC-MAC (CCM). Internet Engineering Task Force (2003)Google Scholar
  11. 11.
    International Organization for Standardization Genève, Switzerland: ISO/IEC WD 19772: 2004, Information technology — Security techniques — Authenticated encryption mechanisms (2004)Google Scholar
  12. 12.
    Dent, A.W., Mitchell, C.J.: User’s Guide to Cryptography and Standards. Artech House, Norwood (2005)zbMATHGoogle Scholar
  13. 13.
    Sierra, J.M., Hernandez, J.C., Jayaram, N., Ribagorda, A.: Low computational cost integrity for block ciphers. Future Generation Computer Systems 20, 857–863 (2004)CrossRefGoogle Scholar
  14. 14.
    Meyer, C.H., Matyas, S.M.: Cryptography: A new dimension in computer data security. John Wiley and Sons, New York (1982)zbMATHGoogle Scholar
  15. 15.
    Kohl, J.T.: The use of encryption in Kerberos for network authentication. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 35–43. Springer, Heidelberg (1990)Google Scholar
  16. 16.
    Steiner, J., Neuman, C., Schiller, J.: Kerberos: an authentication service for open network systems. In: Proceedings: Usenix Association, Winter Conference, Dallas 1988, USENIX Association, Berkeley, California, pp. 191–202 (1988)Google Scholar
  17. 17.
    Gligor, V.G., Donescu, P.: Integrity-aware PCBC encryption schemes. In: Malcolm, J.A., Christianson, B., Crispo, B., Roe, M. (eds.) Security Protocols 1999. LNCS, vol. 1796, pp. 153–171. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Ferguson, N., Whiting, D., Kelsey, J., Wagner, D.: Critical weaknesses of iaPCBC (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Chris J. Mitchell
    • 1
  1. 1.Information Security GroupRoyal Holloway, University of LondonEgham, SurreyUK

Personalised recommendations