On the Security of Two Key-Updating Signature Schemes

  • Xingyang Guo
  • Quan Zhang
  • Chaojing Tang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3574)


In ICICS 2004, Gonzalez-Deleito, Markowitch and Dall’Olio proposed an efficient strong key-insulated signature scheme. They claimed that it is (N–1,N)-key-insulated, i.e., the compromise of the secret keys for even N–1 time periods does not expose the secret keys for the remaining time period. But in this paper, we demonstrate an attack and show that an adversary armed with the signing keys for any two time periods can derive the signing key for any of the remaining time periods with high probability. In a second attack, the adversary may be able to forge signatures for many remaining time periods without computing the corresponding signing keys. A variant forward-secure signature scheme was also presented in ICICS 2004 and claimed more robust than traditional forward-secure signature schemes. But we find that the scheme has two similar weaknesses. We give the way how to repair the two schemes in this paper.


Success Probability Signature Scheme Valid Signature Secure Device Current Time Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdalla, M., Reyzin, L.: A new forward-secure digital signature scheme. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 116–129. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Anderson, R.: Two remarks on public key cryptology. In: Invited lecture, 4th Conference on Computer and Communications Security, ACM, New York (1997)Google Scholar
  3. 3.
    Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999)Google Scholar
  4. 4.
    Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Dodis, Y., Katz, J., Xu, S., Yung, M.: Strong key-insulated signature schemes. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 130–144. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Gonzalez-Deleito, N., Markowitch, O., Dall’Olio, E.: A New Key-Insulated Signature Scheme. In: López, J., Qing, S., Okamoto, E. (eds.) ICICS 2004. LNCS, vol. 3269, pp. 465–479. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Itkis, G., Reyzin, L.: Forward-secure signatures with optimal signing and verifying. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 332–354. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Itkis, G., Reyzin, L.: SiBIR: Signer-base intrusion-resilient signatures. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 499–514. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Kozlov, A., Reyzin, L.: Forward-secure signatures with fast key update. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 241–256. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Xingyang Guo
    • 1
    • 2
  • Quan Zhang
    • 1
  • Chaojing Tang
    • 1
  1. 1.School of Electronic Science and EngineeringNational University, of Defense TechnologyP.R. China
  2. 2.School of Telecommunication EngineeringAir force Engineering, UniversityP.R. China

Personalised recommendations