Advertisement

Group Signature Where Group Manager, Members and Open Authority Are Identity-Based

  • Victor K. Wei
  • Tsz Hon Yuen
  • Fangguo Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3574)

Abstract

We present the first group signature scheme with provable security and signature size O(λ) bits where the group manager, the group members, and the Open Authority (OA) are all identity-based. We use the security model of Bellare, Shi, and Zhang [3], except to add three identity managers for manager, members, and OA respectively, and we discard the Open Oracle (\({\mathcal O} {\mathcal O}\)). Our construction uses identity-based signatures summarized in Bellare, Namprempre, and Neven [2] for manager, Boneh and Franklin’s IBE [7] for OA, and we extend Bellare et al.[3]’s group signature construction by verifiably encrypt an image of the member public key, instead of the public key itself. The last innovation is crucial in our efficiency; otherwise, Camenisch and Damgard[9]’s verifiable encryption would have to be used resulting in lower efficiency.

Keywords

Signature Scheme Random Oracle Random Oracle Model Cryptology ePrint Archive Direct Anonymous Attestation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identification and signature schemes. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 268–286. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Shi, H., Zhang, C.: Foundations of group signature: The case of dynamic groups. To appear in CT-RSA 2005 (2005)Google Scholar
  4. 4.
    Beth, T.: Efficient zero-knowledged identification scheme for smart cards. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 77–86. Springer, Heidelberg (1988)Google Scholar
  5. 5.
    Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Boneh, D., Franklin, M.: Identity-based encryption from the weil paring. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. Cryptology ePrint Archive, Report 2004/205 (2004), http://eprint.iacr.org/
  9. 9.
    Camenisch, J., Damgård, I.: Verifiable encryption, group encryption, and their applications to separable group signatures and signature sharing schemes. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 331–345. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  10. 10.
    Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)Google Scholar
  11. 11.
    Castelluccia, C.: How to convert any ID-based signature schemes into a group signature scheme. Cryptology ePrint Archive, Report 2002/116 (2002), http://eprint.iacr.org/
  12. 12.
    Cha, J.C., Cheon, J.H.: An identity-based signature from gap diffie-hellman groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)Google Scholar
  14. 14.
    Chen, X., Zhang, F., Kim, K.: A new ID-based group signature scheme from bilinear pairings. Cryptology ePrint Archive, Report 2002/184 (2002), http://eprint.iacr.org/
  15. 15.
    Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous identification in ad hoc groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Hess, F.: Efficient identity based signature schemes based on pairing. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Joye, M.: On the difficulty coalition-resistance in group signature schemes (ii). Technique Report, LCIS-99-6B (1999)Google Scholar
  18. 18.
    Joye, M., Kim, S., Lee, N.: Cryptanalysis of two group signature schemes. In: Zheng, Y., Mambo, M. (eds.) ISW 1999. LNCS, vol. 1729, pp. 271–275. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  19. 19.
    Mao, W., Lim, C.H.: Cryptanalysis in prime order subgroup of Z n. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 214–226. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  20. 20.
    Mitsunari, S., Sakai, R., Kasahara, M.: A new traitor tracing. IEICE Trans. Fundamentals E85-A(2), 481–484 (2002)Google Scholar
  21. 21.
    Okamoto, T.: Provably secure and practical identification schemes and corresponding signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993)Google Scholar
  22. 22.
    Park, S., Kim, S., Won, D.: ID-based group signature. Electronics Letters 33(15), 1616–1617 (1997)CrossRefGoogle Scholar
  23. 23.
    Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, p. 552. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  24. 24.
    Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: Proc. of SCIS 2000 (2000)Google Scholar
  25. 25.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  26. 26.
    Tseng, Y., Jan, J.: A novel ID-based group signature. In: International computer symposium, workshop on cryptology and information security, pp. 159–164 (1998)Google Scholar
  27. 27.
    Wei, V.K.: Tight reductions among strong diffie-hellman assumptions. Cryptology ePrint Archive, Report 2005/057(2005), http://eprint.iacr.org/
  28. 28.
    Zhang, F., Safavi-Naini, R., Susilo, W.: An efficient signature scheme from bilinear pairings and its applications. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 277–290. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Victor K. Wei
    • 1
  • Tsz Hon Yuen
    • 1
  • Fangguo Zhang
    • 2
  1. 1.Department of Information EngineeringThe Chinese University of Hong KongHong Kong
  2. 2.Department of Electronics and Communication EngineeringSun Yat-sen UniversityGuangzhouP.R. China

Personalised recommendations