Advertisement

An Efficient Group Signature Scheme from Bilinear Maps

  • Jun Furukawa
  • Hideki Imai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3574)

Abstract

We propose a new group signature scheme which is secure if we assume the Decision Diffie-Hellman assumption, the q-Strong Diffie-Hellman assumption, and the existence of random oracles. The proposed scheme is the most efficient among the all previous group signature schemes in signature length and in computational complexity.

Keywords

Elliptic Curve Encryption Scheme Signature Scheme Random Oracle Signature Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A Practical and Provable Secure Coalition-Resistant Group Signature Scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Ateniese, G., de Medeiros, B.: Efficient Group Signatures without Trapdoors. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 246–268. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Bari, N., Pfitzmann, B.: Collision-Free Accumulators and Fail-Stop Signature Schemes without Trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997)Google Scholar
  4. 4.
    Bellare, M., Shi, H., Zhang, C.: Foundations of Group Signatures: The Case of Dynamic Groups. In: CT-RSA 2005 136–153 (2005)Google Scholar
  5. 5.
    Bellare, M., Micciancio, D., Warinschi, B.: Foundations of Group Signatures: Formal Definitions, Simplified Requirements, and a Construction Based on General Assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Boyen, X., Shacham, H.: Short Group Signature. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Camenisch, J., Groth, J.: Group Signatures: Better Efficiency and New Theoretical Aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 120–133. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Camenisch, J., Lysyanskaya, A.: A Signature Scheme with Efficient Protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Camenisch, J., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials from Bilinear Maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Camenisch, J., Michels, M.: A group signature scheme based on an RSA-variant. Technical Report RS-98-27, BRICS, University of Aarhus (November 1998), An earlier version appears in ASIACRYPT 1998Google Scholar
  12. 12.
    Camenisch, J., Stadler, M.: Efficient Group Signature Schemes for Large Groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)Google Scholar
  13. 13.
    Chaum, D., van Heyst, E.: Group Signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)Google Scholar
  14. 14.
    Dwork, C., Naor, M., Sahai, A.: Concurrent Zero-Knowledge. In: STOC 1998, pp. 409–418 (1998)Google Scholar
  15. 15.
    Furukawa, J., Imai, H.: Efficient Group Signature Scheme from Bilinear Maps (with appendixes). Available from the first author via e-mailGoogle Scholar
  16. 16.
    Furukawa, J., Yonezawa, S.: Group Signatures with Separate and Distributed Authorities. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 77–90. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Izu, T., Takagi, T.: Efficient Computations of the Tate Pairingfor the Large MOV Degrees. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 283–297. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Kiayias, A., Yung, M.: Group Signatures: Provable Security, Efficient Constructions and Anonymity from Trapdoor-Holders. Cryptology ePrint Archieve, Report 2004/076Google Scholar
  19. 19.
    Kiayias, A., Tsiounis, Y., Yung, M.: Traceable Signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Kilian, J., Petrank, E.: Identity Escrow. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 169–185. Springer, Heidelberg (1998)Google Scholar
  21. 21.
    Kim, S., Park, S.J., Won, D.: Convertible Group Signatures. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 311–321. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  22. 22.
    Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym Systems. Selected Areas in Cryptography 1999, pp. 184–199 (1999)Google Scholar
  23. 23.
    Menezes, A., van Oorschot, C., Vanstone, S.: Handbook of Applied Cryptography, pp. 617–627. CRC Press, Boca Raton (1997)zbMATHGoogle Scholar
  24. 24.
    Micciancio, D., Petrank, E.: Efficient and Concurrent Zero-Knowledge from any public coin HVZK protocol. In: Electronic Colloquium on Computational Complexity (ECCC) (045) (2002)Google Scholar
  25. 25.
    Mitsunari, S., Sakai, R., Kasahara, M.: A new Traitor tracing. IEICE Trans. Fundamentals E85-A(2), 481–484 (2002)Google Scholar
  26. 26.
    Miyaji, A., Nakabayashi, M., Takano, S.: New explicit conditions of elliptic curve traces for FR-reduction. IEICE Trans. E85-A(2), 481–484 (2002)Google Scholar
  27. 27.
    Nguyen, L., Safavi-Naini, R.: Efficient and Provably Secure Trapdoor-free Group Signature Schemes from Bilinear Pairings. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 372–386. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  28. 28.
    Naor, M., Yung, M.: Public-key Cryptosystems Provably Secure against Chosen Ciphertext Attacks. In: STOC 1990, pp. 427–437 (1990)Google Scholar
  29. 29.
    Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind Signatures. J. Cryptology 13(3), 361–396 (2000)zbMATHCrossRefGoogle Scholar
  30. 30.
    Scott, M., Barreto, P.S.L.M.: Generating more MNT elliptic curves. Cryptology ePrint Archieve, Report 2004/058Google Scholar
  31. 31.
    Schnorr, C.-P., Jakobsson, M.: Security of signed elGamal encryption. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 73–89. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Jun Furukawa
    • 1
    • 2
  • Hideki Imai
    • 2
  1. 1.NEC CorporationKawasakiJapan
  2. 2.Institute of Industrial ScienceThe University of TokyoTokyoJapan

Personalised recommendations