Advertisement

An Efficient Implementation of a Threshold RSA Signature Scheme

  • Brian King
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3574)

Abstract

Several threshold RSA signature schemes have been proposed, in particular the schemes [4,8] and [20]. Recent research has shown that the earlier schemes [4,8] may be in some cases more “efficient” than these later schemes. Here we describe efficient implementations of threshold RSA schemes as well as further enhancements to improve performance of the Desmedt-Frankel scheme. Our conclusion is that if memory is not an issue there will be situations, for example if one can expect shareholders know who will be participating in the signature generation, that the Desmedt-Frankel scheme is very efficient.

Keywords

Abelian Group Signature Scheme Secret Sharing Secret Sharing Scheme Threshold Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boneh, D., Franklin, M.: Efficient Generation of Shared RSA Keys. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 425–439. Springer, Heidelberg (1997)Google Scholar
  2. 2.
    Cramer, R., Fehr, S.: Optimal Black-Box Secret Sharing over Arbitrary Abelian Groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, p. 272. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Damgard, I., Koprowski, M.: Practical Threshold RSA Signatures without a Trusted Dealer. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 152–165. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    De Santis, A., Desmedt, Y., Frankel, Y., Yung, M.: How to share a function. In: Proceedings of the twenty-sixth annual ACM Symp. Theory of Computing (STOC), pp. 522–533 (1994)Google Scholar
  5. 5.
    Desmedt, Y., Frankel, Y.: Threshold Cryptosystems. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, Heidelberg (1990)Google Scholar
  6. 6.
    Desmedt, Y., Frankel, Y.: Shared generation of authenticators and signatures. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 457–469. Springer, Heidelberg (1992)Google Scholar
  7. 7.
    Desmedt, Y., King, B.: Verifiable Democracy - a protocol to secure an electronic legislature. In: Traunmüller, R., Lenk, K. (eds.) EGOV 2002. LNCS, vol. 2456, pp. 400–403. Springer, Heidelberg (2002)Google Scholar
  8. 8.
    Desmedt, Y., Frankel, Y.: Homomorphic zero-knowledge threshold schemes over any finite abelian group. Siam J. Disc. Math. 7(4), 667–679 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Desmedt, Y., King, B., Kishimoto, W., Kurosawa, K.: A comment on the efficiency of secret sharing scheme over any finite abelian group. In: Boyd, C., Dawson, E. (eds.) ACISP 1998. LNCS, vol. 1438, pp. 391–402. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Frankel, Y., Gemmel, P., Mackenzie, P., Yung, M.: Proactive RSA. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 440–454. Springer, Heidelberg (1997)Google Scholar
  11. 11.
    Frankel, Y., Gemmel, P., Mackenzie, P., Yung, M.: Optimal-Resilience Proactive Public-key Cryptosystems. In: Proc. 38th FOCS, pp. 384–393. IEEE, Los Alamitos (1997)Google Scholar
  12. 12.
    Frankel, Y., MacKenzie, P., Yung, M.: Robust Efficient Distributed RSA-Key Generation. In: STOC 1998, pp. 663–672 (1998)Google Scholar
  13. 13.
    Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust and efficient sharing of RSA functions. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 157–172. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    King, B.: Algorithms to speed up computations in threshold RSA. In: Australasian Conference on Information Security and Privacy, pp. 443-456 (2000)Google Scholar
  15. 15.
    King, B.: Improved Methods to Perform Threshold RSA. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 359–372. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Keng, H.L.: Introduction to Number Theory. Springer, Heidelberg (1982)zbMATHGoogle Scholar
  17. 17.
    Rabin, T.: A Simplified Approach to threshold and proactive RSA. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, p. 89. Springer, Heidelberg (1998)Google Scholar
  18. 18.
    Rivest, R., Shamir, A., Adelman, L.: A method for obtaining digital signatures and public key cryptosystems. Comm. ACM 21, 294–299 (1978)CrossRefGoogle Scholar
  19. 19.
    Shamir, A.: How to share a secret. Comm. ACM 22, 612–613 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Shoup, V.: Practical Threshold Signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Brian King
    • 1
  1. 1.Purdue School of Engineering & TechnologyIndiana Univ. Purdue Univ. at Indianapolis 

Personalised recommendations