Two Improved Partially Blind Signature Schemes from Bilinear Pairings

  • Sherman S. M. Chow
  • Lucas C. K. Hui
  • S. M. Yiu
  • K. P. Chow
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3574)


A blind signature scheme is a protocol for obtaining a digital signature from a signer, but the signer can neither learn the messages he/she sign nor the signatures the recipients obtain afterwards. Partially blind signature is a variant such that part of the message contains pre-agreed information (agreed by the signer and the signature requester) in unblinded form, while threshold blind signature distributes the signing power to a group of signers such that a signature can only be produced by interacting with a predetermined numbers of signers. In this paper, we propose a threshold partially blind signature scheme from bilinear pairings and an ID-based partially blind signature scheme, which are provably secure in the random oracle model. To the best of authors’ knowledge, we give the first discussion on these two notions.


threshold partially blind signature identity-based partially blind signature bilinear pairings 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abe, M., Fujisaki, E.: How to Date Blind Signatures. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 244–251. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  2. 2.
    Abe, M., Okamoto, T.: Provably Secure Partially Blind Signatures. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 271–286. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Boldyreva, A.: Threshold Signature, Multisignature and Blind Signature Schemes Based on the Gap-Diffie-Hellman-Group Signature Scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Chaum, D., Fiat, A., Naor, M.: Untraceable Electronic Cash. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 319–327. Springer, Heidelberg (1990)Google Scholar
  6. 6.
    Chow, S.S.M., Hui, L.C.K., Yiu, S.M., Chow, K.P.: Forward- Secure Multisignature and Blind Signature Schemes. Applied Mathematics and Computation (2004) (accepted)Google Scholar
  7. 7.
    Chow, S.S.M., Hui, L.C.K., Yiu, S.M., Chow, K.P.: Two Improved Partially Blind Signature Schemes from Bilinear Pairings. Full version. Available at Cryptology ePrint Archive, 2004/108Google Scholar
  8. 8.
    Duc, D.N., Cheon, J.H., Kim, K.: A Forward-Secure Blind Signature Scheme based on the Strong RSA Assumption. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 11–21. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Juang, W.-S., Lei, C.-L.: A Secure and Practical Electronic Voting Scheme for Real World Environments. TIEICE: IEICE Transactions on Communications/Electronics/Information and Systems (1997)Google Scholar
  10. 10.
    Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust Threshold DSS Signatures. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 354–371. Springer, Heidelberg (1996)Google Scholar
  11. 11.
    Kim, J., Kim, K., Lee, C.: An Efficient and Provably Secure Threshold Blind Signature. In: Kim, K.-c. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 318–327. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Lenti, J., Loványi, I., Nagy, Á.: Blind Signature Based Steganographic Protocol. In: IEEE International Workshop on Intelligent Signal Processing (2001)Google Scholar
  13. 13.
    Liu, L., Cao, Z.: Universal Forgeability of a Forward-Secure Blind Signature Scheme Proposed by Duc et al. Cryptology ePrint Archive, 2004/262Google Scholar
  14. 14.
    Pedersen, T.P.: Distributed Provers with Applications to Undeniable Signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 221–242. Springer, Heidelberg (1991)Google Scholar
  15. 15.
    Pointcheval, D., Stern, J.: Provably Secure Blind Signature Schemes. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 252–265. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  16. 16.
    Schnorr, C.-P.: Security of Blind Discrete Log Signatures against Interactive Attacks. In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 1–12. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Schnorr, C.P.: Enhancing the Security of Perfect Blind DL-Signatures (December 2003) (manuscript)Google Scholar
  18. 18.
    Shamir, A.: How to Share A Secret. Communications of the ACM 22(11), 612–613 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  20. 20.
    Vo, D.L., Zhang, F., Kim, K.: A New Threshold Blind Signature Scheme from Pairings. In: Symposium on Cryptography and Information Security, SCIS 2003, vol. 1/2, pp. 233–238 (2003)Google Scholar
  21. 21.
    Wagner, D.: A Generalized Birthday Problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Yuen, T.H., Wei, V.K.: Fast and Proven Secure Blind Identity-Based Signcryption from Pairings. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 305–322. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Zhang, F., Kim, K.: Efficient ID-Based Blind Signature and Proxy Signature from Bilinear Pairings. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 312–323. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Zhang, F., Safavi-Naini, R., Susilo, W.: Efficient Verifiably Encrypted Signature and Partially Blind Signature from Bilinear Pairings. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 191–204. Springer, Heidelberg (2003), Revised version available at CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Sherman S. M. Chow
    • 1
  • Lucas C. K. Hui
    • 1
  • S. M. Yiu
    • 1
  • K. P. Chow
    • 1
  1. 1.Department of Computer ScienceThe University of Hong KongHong Kong

Personalised recommendations