Locally Consistent Parsing and Applications to Approximate String Comparisons

  • Tuğkan Batu
  • S. Cenk Sahinalp
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3572)


Locally consistent parsing (LCP) is a context sensitive partitioning method which achieves partition consistency in (almost) linear time. When iteratively applied, LCP followed by consistent block labeling provides a powerful tool for processing strings for a multitude of problems. In this paper we summarize applications of LCP in approximating well known distance measures between pairs of strings in (almost) linear time.


Edit Distance Input String Edit Operation Dynamic Text Lower Common Ancestor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alstrup, S., Stølting Brodal, G., Rauhe, T.: Pattern matching in dynamic texts. In: SODA 2000: Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algorithms, pp. 819–828 (2000)Google Scholar
  2. 2.
    Bar-Yossef, Z., Jayram, T.S., Krauthgamer, R., Kumar, R.: Approximating edit distance efficiently. In: IEEE Symposium on Foundations of Computer Science, FOCS (2004)Google Scholar
  3. 3.
    Batu, T., Ergun, F., Cenk Sahinalp, S.: Oblivious string embeddings and edit distance approximations. Technical Report TR2005-11, School of Computing Science, Simon Fraser University (2005)Google Scholar
  4. 4.
    Cole, R., Hariharan, R.: Approximate string matching: A simpler faster algorithm. In: SODA, pp. 463–472 (1998)Google Scholar
  5. 5.
    Cole, R., Vishkin, U.: Deterministic coin tossing and accelerating cascades: Micro and macro techniques for designing parallel algorithms. In: ACM Symposium on Theory of Computing, STOC (1986)Google Scholar
  6. 6.
    Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with moves. In: SODA, pp. 667–676 (2002)Google Scholar
  7. 7.
    Cormode, G., Muthukrishnan, S.: Substring compression problems. SODA (2005)Google Scholar
  8. 8.
    Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM Journal on Computing 13(2), 338–355 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Indyk, P., Motwani, R.: Approximate nearest neighbors: Towards removing the curse of dimensionality. In: STOC, pp. 604–613 (1998)Google Scholar
  10. 10.
    Kushilevitz, E., Ostrovsky, R., Rabani, Y.: Efficient search for approximate nearest neighbor in high dimensional spaces. In: STOC, pp. 614–623 (1998)Google Scholar
  11. 11.
    Masek, W.J., Paterson, M.S.: A faster algorithm computing string edit distances. Journal of Computer and System Sciences 20(1), 18–31 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    McCreight, E.M.: A space-economical suffix tree construction algorithm. J. ACM 23(2), 262–272 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Mehlhorn, K., Sundar, R., Uhrig, C.: Maintaining dynamic sequences under equality-tests in polylogarithmic time. In: SODA, pp. 213–222 (1994)Google Scholar
  14. 14.
    Muthukrishnan, S., Cenk Sahinalp, S.: Approximate nearest neighbors and sequence comparison with block operations. In: STOC, pp. 416–424 (2000)Google Scholar
  15. 15.
    Cenk Sahinalp, S., Vishkin, U.: On a parallel-algorithms method for string matching problems. In: Bonuccelli, M.A., Crescenzi, P., Petreschi, R. (eds.) CIAC 1994. LNCS, vol. 778, pp. 22–32. Springer, Heidelberg (1994)Google Scholar
  16. 16.
    Cenk Sahinalp, S., Vishkin, U.: Symmetry breaking for suffix tree construction. In: STOC, pp. 300–309 (1994)Google Scholar
  17. 17.
    Cenk Sahinalp, S., Vishkin, U.: Data compression using locally consistent parsing. UMIACS Technical Report (1995)Google Scholar
  18. 18.
    Cenk Sahinalp, S., Vishkin, U.: Efficient approximate and dynamic matching of patterns using a labeling paradigm. In: IEEE Symposium on Foundations of Computer Science, FOCS (1996)Google Scholar
  19. 19.
    Schieber, B., Vishkin, U.: On finding lowest common ancestors: Simplification and parallelization. SIAM Journal on Computing 17(6), 1253–1262 (1988)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Tuğkan Batu
    • 1
  • S. Cenk Sahinalp
    • 1
  1. 1.School of Computing ScienceSimon Fraser University 

Personalised recommendations