Skip to main content

Segmenting and Tracking the Left Ventricle by Learning the Dynamics in Cardiac Images

  • Conference paper
Information Processing in Medical Imaging (IPMI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3565))

Abstract

Having accurate left ventricle (LV) segmentations across a cardiac cycle provides useful quantitative (e.g. ejection fraction) and qualitative information for diagnosis of certain heart conditions. Existing LV segmentation techniques are founded mostly upon algorithms for segmenting static images. In order to exploit the dynamic structure of the heart in a principled manner, we approach the problem of LV segmentation as a recursive estimation problem. In our framework, LV boundaries constitute the dynamic system state to be estimated, and a sequence of observed cardiac images constitute the data. By formulating the problem as one of state estimation, the segmentation at each particular time is based not only on the data observed at that instant, but also on predictions based on past segmentations. This requires a dynamical system model of the LV, which we propose to learn from training data through an information-theoretic approach. To incorporate the learned dynamic model into our segmentation framework and obtain predictions, we use ideas from particle filtering. Our framework uses a curve evolution method to combine such predictions with the observed images to estimate the LV boundaries at each time. We demonstrate the effectiveness of the proposed approach on a large set of cardiac images. We observe that our approach provides more accurate segmentations than those from static image segmentation techniques, especially when the observed data are of limited quality.

This work supported by NSF ITR grant 0121182 & AFOSR grant FA9550-04-1-0351.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arulampalam, S., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing 50(2), 174–188 (2002)

    Article  Google Scholar 

  2. Caselles, V., Catte, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numerische Mathematik 66, 1–31 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chakraborty, A., Staib, L., Duncan, J.: Deformable boundary finding in medical images by integrating gradient and region information. IEEE Transactions on Medical Imaging 15, 859–870 (1996)

    Article  Google Scholar 

  4. Chen, Y., Tagare, H.D., Thiruvenkadam, S., Huang, F., Wilson, D., Gopinath, K.S., Briggs, R.W.: Using prior shapes in geometric active contours in a variational framework. Int’l Journal of Computer Vision 50(3), 315–328 (2002)

    Article  MATH  Google Scholar 

  5. Doucet, A., Godsill, S.J., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing 10(3), 197–208 (2000)

    Article  Google Scholar 

  6. Djuric, P.M., Kotecha, J.H., Zhang, J., Huang, Y., Ghirmi, T., Bugallo, M.F., Miguez, J.: Particle filtering. IEEE Signal Processing Magazine 20(5), 19–38 (2003)

    Article  Google Scholar 

  7. Duncan, J.S., Smeulders, A., Lee, F., Zaret, B.: Measurement of end diastolic shape deformity using bending energy. Computers in Cardiology, 277–280 (1988)

    Google Scholar 

  8. Geiger, D., Gupta, A., Costa, L.A., Vlontzos, J.: Dynamic programming for detecting, tracking and matching deformable contours. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(3), 294–302 (1995)

    Article  Google Scholar 

  9. Goshtasby, A., Turner, D.A.: Segmentation of cardiac cine MR images for extraction of right and left ventricular chambers. IEEE Transactions on Medical Imaging 14(1), 56–64 (1995)

    Article  Google Scholar 

  10. Hall, P., Sheather, S.J., Jones, M.C., Marron, J.S.: On optimal data-based bandwidth selection in kernel density estimation. Biometrika 78(2), 263–269 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ihler, A.: Maximally Informative Subspaces. MS Thesis, MIT (2000)

    Google Scholar 

  12. Jolly, M., Duta, N., Funka-Lea, G.: Segmentation of the left ventricle in cardiac MR images. In: Proc. of the IEEE Int’l. Conf. on Computer Vision, vol. 1, pp. 501–508 (2001)

    Google Scholar 

  13. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int’l Journal of Computer Vision, 321–331 (1987)

    Google Scholar 

  14. Kotecha, J.H., Djuric, P.M.: Gaussian particle filtering. IEEE Transactions on Signal Processing 51(10), 2592–2601 (2003)

    Article  MathSciNet  Google Scholar 

  15. Kuhne, G., Weickert, J., Schuster, O., Richter, S.: A tensor-driven active contour model for moving object segmentation. In: Proceedings of the 2001 IEEE Int’l Conference on Image Processing, vol. 2, pp. 73–76 (2001)

    Google Scholar 

  16. Leventon, M., Grimson, E., Faugeras, O.: Statistical shape influence in geodesic active contours. In: Proc. IEEE Conf. on Comp. Vision & Patt Rec, vol. 1, pp. 316–323 (2000)

    Google Scholar 

  17. McCulloch, A., Bassingthwaighte, J.B., Hunter, P.J., Noble, D., Blundell, T.L., Pawson, T.: Computational biology of the heart: From structure to function. Progress in Biophysics and Molecular Biology 69(2-3), 153–155 (1998)

    Article  Google Scholar 

  18. McEachen II, J.C., Duncan, J.S.: Shape-based tracking of left ventricular wall motion. IEEE Transactions on Medical Imaging 16(3), 270–283 (1997)

    Article  Google Scholar 

  19. Paragios, N., Deriche, R.: Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 266–280 (2000)

    Article  Google Scholar 

  20. Paragios, N.: A variational approach for the segmentation of the left ventricle in cardiac image analysis. Int’l Journal of Computer Vision 50(3), 345–362 (2002)

    Article  MATH  Google Scholar 

  21. Senegas, J., Netsch, T., Cocosco, C.A., Lund, G., Stork, A.: Segmentation of medical images with a shape and motion model: A bayesian perspective. In: Sonka, M., Kakadiaris, I.A., Kybic, J. (eds.) CVAMIA/MMBIA 2004. LNCS, vol. 3117, pp. 157–168. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  22. Sermesant, M., Forest, C., Pennec, X., Delingette, H., Ayache, N.: Deformable biomechanical models: Applications to 4D cardiac image analysis. Medical Image Analysis 7(4), 475–488 (2003)

    Article  Google Scholar 

  23. Sethian, J.A.: Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Material Science. Cambridge Univ. Press, Cambridge (1996)

    MATH  Google Scholar 

  24. von Schutthess, G.K.: The effects of motion and flow on magnetic resonance imaging. Morphology and Function in MRI, Ch. 3, 43–62 (1989)

    Google Scholar 

  25. Sun, W., Cetin, M., Chan, R., Reddy, V., Holmvang, G., Chandar, V., Willsky, A.: Segmenting and Tracking the Left Ventricle by Learning the Dynamics in Cardiac Images. MIT LIDS Technical Report 2642 (February 2005)

    Google Scholar 

  26. Tsai, A., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, W.E., Willsky, A.: A shape-based approach to the segmentation of medical imagery using level sets. IEEE Transactions on Medical Imaging 22(2), 137–154 (2003)

    Article  Google Scholar 

  27. Weng, J., Singh, A., Chiu, M.Y.: Learning-based ventricle detection from cardiac MR & CT images. IEEE Trans on Medical Imaging 16(4), 378–391 (1997)

    Article  Google Scholar 

  28. Zhou, X.S., Comaniciu, D., Gupta, A.: An information fusion framework for robust shape tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(1), 115–129 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sun, W. et al. (2005). Segmenting and Tracking the Left Ventricle by Learning the Dynamics in Cardiac Images. In: Christensen, G.E., Sonka, M. (eds) Information Processing in Medical Imaging. IPMI 2005. Lecture Notes in Computer Science, vol 3565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11505730_46

Download citation

  • DOI: https://doi.org/10.1007/11505730_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26545-0

  • Online ISBN: 978-3-540-31676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics