Skip to main content

Bayesian Population Modeling of Effective Connectivity.

  • Conference paper
Information Processing in Medical Imaging (IPMI 2005)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 3565))

Abstract

A hierarchical model based on the Multivariate Autoreges- sive (MAR) process is proposed to jointly model neurological time-series collected from multiple subjects, and to characterize the distribution of MAR coefficients across the population from which those subjects were drawn. Thus, inference about effective connectivity between brain re- gions may be generalized beyond those subjects studied. The posterior on population- and subject-level connectivity parameters are estimated in a Variational Bayesian (VB) framework, and structural model param- eters are chosen by the corresponding evidence criteria. The significance of resulting connectivity statistics are evaluated by permutation-based approximations to the null distribution. The method is demonstrated on simulated data and on actual multi-subject neurological time-series.

This research was supported by grants NIH 5 P41 RR13218 and FIRST BIRN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernardo, J.M., Smith, A.F.M.: Bayesian Theory. John Wiley & Sons, Chichester (1994)

    Book  MATH  Google Scholar 

  2. Box, G.E.P., Tao, G.C.: Bayesian Inference in Statistical Analysis. John Wiley & Sons, Chichester (1992)

    MATH  Google Scholar 

  3. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum-likelihood from incom- plete data via the em algorithm. J. Royal Statist. Soc. Ser. B 39, 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  4. Friston, K.J., Harrison, L., Penny, W.: Dynamic causal modeling. NeuroImage 19 (2003)

    Google Scholar 

  5. Friston, K.J., Penny, W., Phillips, C., Kiebel, S., Hinton, G., Ashburner, J.: Classical and bayesian inference in neuroimaging: Theory. Neuroimage 16, 465–483 (2002)

    Article  Google Scholar 

  6. Gelman, A.: Prior distributions for variance parameters in hierarchical models. Bayesian Analysis (June 2004)

    Google Scholar 

  7. Harrison, L., Penny, W.D., Friston, K.J.: Multivariate autoregressive modeling of fmri time series. NeuroImage 19, 1477–1491 (2003)

    Article  Google Scholar 

  8. Hinton, G.E., Camp, D.V.: Keeping neural networks simple by minimizing the description length of the weights. In: Proceedings of the COLT 1993, pp. 5–13 (1993)

    Google Scholar 

  9. Kaminski, M., Ding, M., Truccolo, W.A., Bressler, S.L.: Evaluating causal relations in neural systems: Granger causality, directed transfer functions and sta- tistical assessment of significance. Biological Cybernetics 85, 145–157 (2001)

    Article  MATH  Google Scholar 

  10. Lappalainen, H., Miskin, J.W.: Ensemble learning. Advances in Independent Components Analysis (2000)

    Google Scholar 

  11. MacKay, D.J.C.: Bayesian non-linear modeling for the energy prediction compe- tition. ASHRAE Transactions 100, 1053–1062 (1994)

    Google Scholar 

  12. MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  13. Mangus, J.R., Neudecker, H.: Matrix Differential Calculus with Applications in Statistics and Econometrics (Revised Edition). John Wiley & Sons, Chichester (1999)

    Google Scholar 

  14. McIntosh, A.R., Gonzalez-Lima, F.: The application of structural equation modeling to metabolic mapping of functional neural systems. HBM 2, 2–22 (1994)

    Article  Google Scholar 

  15. Meng, X.-L., van Dyk, D.: Fast em-type implementations for mixed effects models. J. Royal Statist. Soc. Ser. B 60(3), 559–578 (1998)

    Article  MATH  Google Scholar 

  16. Penny, W.D., Roberts, S.J.: Bayesian multivariate autoregressive models with structured priors. IEE Proc.-Vis. Image Signal Process 149(1) (February 2002)

    Google Scholar 

  17. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in C. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  18. Zhang, X.L., Begleiter, H., Porjesz, B., Wang, W., Litke, A.: Event related potentials during object recognition taks. Brain Research Bulletin 38(6) (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cosman, E.R., Wells-III, W.M. (2005). Bayesian Population Modeling of Effective Connectivity.. In: Christensen, G.E., Sonka, M. (eds) Information Processing in Medical Imaging. IPMI 2005. Lecture Notes in Computer Science, vol 3565. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11505730_4

Download citation

  • DOI: https://doi.org/10.1007/11505730_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-26545-0

  • Online ISBN: 978-3-540-31676-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics